Mathematical modeling of vector-borne diseases with an additional host-to-host transmission

  • Mechanistic disease spread models for different vector borne diseases have been studied from the 19th century. The relevance of mathematical modeling and numerical simulation of disease spread is increasing nowadays. This thesis focuses on the compartmental models of the vector-borne diseases that are also transmitted directly among humans. An example of such an arboviral disease that falls under this category is the Zika Virus disease. The study begins with a compartmental SIRUV model and its mathematical analysis. The non-trivial relationship between the basic reproduction number obtained through two methods have been discussed. The analytical results that are mathematically proven for this model are numerically verified. Another SIRUV model is presented by considering a different formulation of the model parameters and the newly obtained model is shown to be clearly incorporating the dependence on the ratio of mosquito population size to human population size in the disease spread. In order to incorporate the spatial as well as temporal dynamics of the disease spread, a meta-population model based on the SIRUV model was developed. The space domain under consideration are divided into patches which may denote mutually exclusive spatial entities like administrative areas, districts, provinces, cities, states or even countries. The research focused only on the short term movements or commuting behavior of humans across the patches. This is incorportated in the multi-patch meta-population model using a matrix of residence time fractions of humans in each patches. Mathematically simplified analytical results are deduced by which it is shown that, for an exemplary scenario that is numerically studied, the multi-patch model also admits the threshold properties that the single patch SIRUV model holds. The relevance of commuting behavior of humans in the disease spread has been presented using the numerical results from this model. The local and non-local commuting are incorporated into the meta-population model in a numerical example. Later, a PDE model is developed from the multi-patch model.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasser*innenangaben:Arsha Sherly
URN:urn:nbn:de:hbz:386-kluedo-77993
DOI:https://doi.org/10.26204/KLUEDO/7799
Betreuer*in:Axel Klar
Dokumentart:Dissertation
Kumulatives Dokument:Nein
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):12.03.2024
Jahr der Erstveröffentlichung:2024
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Titel verleihende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Annahme der Abschlussarbeit:20.03.2023
Datum der Publikation (Server):13.03.2024
Seitenzahl:81
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):34-XX ORDINARY DIFFERENTIAL EQUATIONS
35-XX PARTIAL DIFFERENTIAL EQUATIONS
37-XX DYNAMICAL SYSTEMS AND ERGODIC THEORY [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX]
65-XX NUMERICAL ANALYSIS
93-XX SYSTEMS THEORY; CONTROL (For optimal control, see 49-XX)
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung (CC BY 4.0)