## 65-XX NUMERICAL ANALYSIS

### Filtern

#### Dokumenttyp

- Preprint (5)
- Dissertation (4)

#### Schlagworte

- isogeometric analysis (3)
- modal derivatives (2)
- B-Spline (1)
- Eikonal equation (1)
- FEM-FCT stabilization (1)
- Isogeometrische Analyse (1)
- Kirchhoff-Love shell (1)
- NURBS (1)
- Nonsmooth contact dynamics (1)
- Optimale Kontrolle (1)

- Nonsmooth Contact Dynamics for the Large-Scale Simulation of Granular Material (2015)
- For the prediction of digging forces from a granular material simulation, the Nonsmooth Contact Dynamics Method is examined. First, the equations of motion for nonsmooth mechanical systems are laid out. They are a differential variational inequality that has the same structure as classical discrete algebraic equations. Using a Galerkin projection in time, it becomes possible to derive nonsmooth versions of the classical SHAK and RATTLE integrators. A matrix-free Interior Point Method is used for the complementarity problems that need to be solved in every time step. It is shown that this method outperforms the Projected Gauss-Jacobi method by several orders of magnitude and produces the same digging force result as the Discrete Element Method in comparable computing time.

- Isogeometric finite element methods for shape optimization (2015)
- In this thesis we develop a shape optimization framework for isogeometric analysis in the optimize first–discretize then setting. For the discretization we use isogeometric analysis (iga) to solve the state equation, and search optimal designs in a space of admissible b-spline or nurbs combinations. Thus a quite general class of functions for representing optimal shapes is available. For the gradient-descent method, the shape derivatives indicate both stopping criteria and search directions and are determined isogeometrically. The numerical treatment requires solvers for partial differential equations and optimization methods, which introduces numerical errors. The tight connection between iga and geometry representation offers new ways of refining the geometry and analysis discretization by the same means. Therefore, our main concern is to develop the optimize first framework for isogeometric shape optimization as ground work for both implementation and an error analysis. Numerical examples show that this ansatz is practical and case studies indicate that it allows local refinement.

- Isogeometric Finite Element Analysis of Nonlinear Structural Vibrations (2015)
- In this thesis we present a new method for nonlinear frequency response analysis of mechanical vibrations. For an efficient spatial discretization of nonlinear partial differential equations of continuum mechanics we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of exact geometry representation and higher accuracy of numerical approximations using spline functions. For computing nonlinear frequency response to periodic external excitations, we rely on the well-established harmonic balance method. It expands the solution of the nonlinear ordinary differential equation system resulting from spatial discretization as a truncated Fourier series in the frequency domain. A fundamental aspect for enabling large-scale and industrial application of the method is model order reduction of the spatial discretization of the equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. We investigate the concept of modal derivatives theoretically and using computational examples we demonstrate the applicability and accuracy of the reduction method for nonlinear static computations and vibration analysis. Furthermore, we extend nonlinear vibration analysis to incompressible elasticity using isogeometric mixed finite element methods.

- Isogeometric Shell Discretizations for Flexible Multibody Dynamics (2015)
- This work aims at including nonlinear elastic shell models in a multibody framework. We focus our attention to Kirchhoff-Love shells and explore the benefits of an isogeometric approach, the latest development in finite element methods, within a multibody system. Isogeometric analysis extends isoparametric finite elements to more general functions such as B-Splines and Non-Uniform Rational B-Splines (NURBS) and works on exact geometry representations even at the coarsest level of discretizations. Using NURBS as basis functions, high regularity requirements of the shell model, which are difficult to achieve with standard finite elements, are easily fulfilled. A particular advantage is the promise of simplifying the mesh generation step, and mesh refinement is easily performed by eliminating the need for communication with the geometry representation in a Computer-Aided Design (CAD) tool. Quite often the domain consists of several patches where each patch is parametrized by means of NURBS, and these patches are then glued together by means of continuity conditions. Although the techniques known from domain decomposition can be carried over to this situation, the analysis of shell structures is substantially more involved as additional angle preservation constraints between the patches might arise. In this work, we address this issue in the stationary and transient case and make use of the analogy to constrained mechanical systems with joints and springs as interconnection elements. Starting point of our work is the bending strip method which is a penalty approach that adds extra stiffness to the interface between adjacent patches and which is found to lead to a so-called stiff mechanical system that might suffer from ill-conditioning and severe stepsize restrictions during time integration. As a remedy, an alternative formulation is developed that improves the condition number of the system and removes the penalty parameter dependence. Moreover, we study another alternative formulation with continuity constraints applied to triples of control points at the interface. The approach presented here to tackle stiff systems is quite general and can be applied to all penalty problems fulfilling some regularity requirements. The numerical examples demonstrate an impressive convergence behavior of the isogeometric approach even for a coarse mesh, while offering substantial savings with respect to the number of degrees of freedom. We show a comparison between the different multipatch approaches and observe that the alternative formulations are well conditioned, independent of any penalty parameter and give the correct results. We also present a technique to couple the isogeometric shells with multibody systems using a pointwise interaction.

- Pedestrian Flow Models (2014)
- There have been many crowd disasters because of poor planning of the events. Pedestrian models are useful in analysing the behavior of pedestrians in advance to the events so that no pedestrians will be harmed during the event. This thesis deals with pedestrian flow models on microscopic, hydrodynamic and scalar scales. By following the Hughes' approach, who describes the crowd as a thinking fluid, we use the solution of the Eikonal equation to compute the optimal path for pedestrians. We start with the microscopic model for pedestrian flow and then derive the hydrodynamic and scalar models from it. We use particle methods to solve the governing equations. Moreover, we have coupled a mesh free particle method to the fixed grid for solving the Eikonal equation. We consider an example with a large number of pedestrians to investigate our models for different settings of obstacles and for different parameters. We also consider the pedestrian flow in a straight corridor and through T-junction and compare our numerical results with the experiments. A part of this work is devoted for finding a mesh free method to solve the Eikonal equation. Most of the available methods to solve the Eikonal equation are restricted to either cartesian grid or triangulated grid. In this context, we propose a mesh free method to solve the Eikonal equation, which can be applicable to any arbitrary grid and useful for the complex geometries.

- Nonlinear frequency response analysis of structural vibrations (2014)
- In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we use the isogeometric finite element method, which has already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

- Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations (2013)
- In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometric finite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), for describing the geometry and for representing the numerical solution. In case of linear vibrational analysis, this approach has already been shown to possess substantial advantages over classical finite elements, and we extend it here to a nonlinear framework based on the harmonic balance principle. As application, the straight nonlinear Euler-Bernoulli beam is used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysis of nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method for isogeometric nonlinear vibration analysis.

- An Inexact Interior Point Method for the Large-Scale Simulation of Granular Material (2013)
- Non-smooth contact dynamics provides an increasingly popular simulation framework for granular material. In contrast to classical discrete element methods, this approach is stable for arbitrary time steps and produces visually acceptable results in very short computing time. Yet when it comes to the prediction of draft forces, non-smooth contact dynamics is typically not accurate enough. We therefore propose to combine the method class with an interior point algorithm for higher accuracy. Our specific algorithm is based on so-called Jordan algebras and exploits the relation to symmetric cones in order to tackle the conical constraints that are intrinsic to frictional contact problems. In every interior point iteration a linear system has to be solved. We analyze how the interior point method behaves when it is combined with Krylov subspace solvers and incomplete factorizations. We show that efficient preconditioners and efficient linear solvers are essential for the method to be applicable to large-scale problems. Using BiCGstab as a linear solver and incomplete Cholesky factorizations, we substantially improve the accuracy in comparison to the projected Gauss-Jacobi solver.

- On Finite Element Method–Flux Corrected Transport Stabilization for Advection-Diffusion Problems in a Partial Differential-Algebraic Framework (2013)
- An extension of the finite element method–flux corrected transport stabilization (FEM-FCT) for hyperbolic problems in the context of partial differential- algebraic equations (PDAEs) is proposed. Given a local extremum diminishing property of the spatial discretization, the positivity preservation of the one-step θ−scheme when applied to the time integration of the resulting differential- algebraic equation (DAE) is shown, under a mild restriction on the time step- size. As crucial tool in the analysis, the Drazin inverse and the corresponding Drazin ODE are explicitly derived. Numerical results are presented for non- constant and time-dependent boundary conditions in one space dimension and for a two-dimensional advection problem where the advection proceeds skew to the mesh.