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Abstract

Mechanistic disease spread models for different vector borne diseases have been studied from the

19th century. The relevance of mathematical modeling and numerical simulation of disease spread is

increasing nowadays. This thesis focuses on the compartmental models of the vector-borne diseases

that are also transmitted directly among humans. An example of such an arboviral disease that falls

under this category is the Zika Virus disease. The study begins with a compartmental SIRUV model

and its mathematical analysis. The non-trivial relationship between the basic reproduction number

obtained through two methods have been discussed. The analytical results that are mathematically

proven for this model are numerically verified. Another SIRUV model is presented by considering

a different formulation of the model parameters and the newly obtained model is shown to be

clearly incorporating the dependence on the ratio of mosquito population size to human population

size in the disease spread. In order to incorporate the spatial as well as temporal dynamics of the

disease spread, a meta-population model based on the SIRUV model was developed. The space

domain under consideration are divided into patches which may denote mutually exclusive spatial

entities like administrative areas, districts, provinces, cities, states or even countries. The research

focused only on the short term movements or commuting behavior of humans across the patches.

This is incorportated in the multi-patch meta-population model using a matrix of residence time

fractions of humans in each patches. Mathematically simplified analytical results are deduced by

which it is shown that, for an exemplary scenario that is numerically studied, the multi-patch model

also admits the threshold properties that the single patch SIRUV model holds. The relevance of

commuting behavior of humans in the disease spread has been presented using the numerical results

from this model. The local and non-local commuting are incorporated into the meta-population

model in a numerical example. Later, a PDE model is developed from the multi-patch model.



Abstrakt

Mechanistische Ausbreitungsmodelle für verschiedene vektorübertragene Krankheiten werden

seit dem 19. Jahrhundert untersucht. Die Bedeutung der mathematischen Modellierung und nu-

merischen Simulation der Krankheitsausbreitung nimmt heutzutage zu. Diese Arbeit konzentriert

sich auf die Kompartimentmodelle für vektorübertragene Krankheiten, die auch direkt auf den Men-

schen übertragen werden. Ein Beispiel für eine solche arbovirale Krankheit ist das Zika-Virus. Die

Studie beginnt mit einem kompartimentellen SIRUV -Modell und seiner mathematischen Analyse.

Die nicht-triviale Beziehung Reproduktionszahl zur Ausbreitung, die mit zwei Methoden ermittelt

wurde, wird diskutiert. Die analytischen Ergebnisse, die für dieses Modell mathematisch bewiesen

sind, werden numerisch verifiziert. Ein weiteres SIRUV -Modell wird unter Berücksichtigung

einer anderen Formulierung der Modellparameter vorgestellt, und es wird gezeigt, dass das neu

gewonnene Modell die Abhängigkeit vom Verhältnis zwischen der Größe der Mückenpopulation

und der Größe der menschlichen Bevölkerung bei der Krankheitsausbreitung deutlich berück-

sichtigt. Um sowohl die räumliche als auch die zeitliche Dynamik der Krankheitsausbreitung

zu berücksichtigen, wurde ein Meta-Populationsmodell auf der Grundlage des SIRUV -Modells

entwickelt. Das betrachtete Gebiet ist in Patches unterteilt, die sich gegenseitig ausschließende

räumliche Einheiten wie Verwaltungsgebiete, Bezirke, Provinzen, Städte, Staaten oder sogar Länder

bezeichnen können. Die Forschung konzentrierte sich nur auf die kurzfristigen Bewegungen oder

das Pendelverhalten von Menschen in den Patches. Dies wird in das Meta-Populationsmodell für

mehrere Gebiete aufgenommen, indem eine Matrix der Aufenthaltszeitanteile der Menschen in

den einzelnen Gebieten erstellt wird. Es werden mathematisch vereinfachte analytische Ergebnisse

abgeleitet, mit denen gezeigt wird, dass für ein beispielhaftes Szenario, das numerisch unter-

sucht wird, das Multi-Patch-Modell ebenfalls die Schwellenwerteigenschaften aufweist, die das

Single-Patch-SIRUV -Modell besitzt. Die Bedeutung des Pendelverhaltens von Menschen für die

Krankheitsausbreitung wurde anhand der numerischen Ergebnisse dieses Modells dargestellt. Das

lokale und nicht-lokale Pendeln wird in einem numerischen Beispiel in das Meta-Populationsmodell

einbezogen. Später wird aus dem Multi-Patch-Modell ein PDE-Modell entwickelt.
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1 Introduction

Mathematical modeling of disease dynamics is of increasing relevance nowadays. This thesis

mainly discusses the modeling of the spread of diseases that involve direct transmission between

humans, along with incidences through mosquitoes. Zika Virus(ZIKV) illness or Zika fever is

an important disease that falls under this category. ZIKV belongs to the genus Flavivirus[52]

and it causes an arboviral disease in humans. An arboviral disease is a term used for infections

caused by a group of viruses spread to people by the bite of infected arthropods(insects). Other

arboviruses that fall under the genus Flavivirus are West Nile Virus, Dengue Virus, yellow fever

Virus, etc. The major arthropods involved in the transmission of ZIKV are mosquitoes of the

Culicidea family and of the Aedes genus, including Aedes Aegypti[34]. There is also evidence

for the sexual transmission of ZIKV among humans[25, 43]. Zika can also be transmitted from

the mother to the fetus and there is evidence of perinatal transmission from an outbreak in French

Polynesia[8]. In those cases where the virus got transmitted through the placenta, it is suspected

that this increases the risk of stillbirth and microcephaly in newborn babies[42]. In most cases

of ZIKV infection, the symptoms are reportedly mild, ranging from rashes and fever to headache

and conjunctivitis. The symptoms last for 2-7 days. Most people develop no symptoms of a Zika

infection and for these reasons, most cases go unreported. At the same time, a major concern is

proposed in association with the correlation of the illness to some neurological and auto-immune

disorders like Gullian Barre syndrome[7].

Zika Virus was first isolated in the Zika forest of Uganda in April 1947, from a rhesus monkey[17]

and later was identified in humans in 1952, in an antibody survey held in Uganda(see [16]). Later

on, it was spread across the countries and continents until a major outbreak was reported in 2007

where 73% of the population in Yap Island was infected[22]. Further, in 2015, a major ZIKV

outbreak occurred in the Americas, starting with Brazil. During this outbreak, there was evidence

that ZIKV traces were found in the specimens of Aedes Aegepti mosquitoes collected from Rio

de Janeiro[13]. Favorable climatic conditions for the vectors to breed, as well as human mobility,

played a key role in this outbreak. Further from Brazil, the disease was transmitted to different

other countries within the Americas in the following months. Currently, ZIKV can be detected

using a real-time PCR rapid test (see [23]). During the ZIKA outbreak in Brazil, studies show

that it is highly probable that many cases of this infection go undetected due to reasons like the

asymptomatic nature of the disease, serological cross-reaction of ZIKV with other flaviviruses that

leads to false-positive or uninterpretable ZIKV serology results, etc. which collectively might have

resulted in severe under-reporting[38]. A further detailed overview of the outbreak of ZIKV in

Brazil can be found in the literature( see for eg. [40]). There is also no specific treatment protocol

for curing the disease, thereby the only possible treatment is to address the symptoms and treat them.
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Figure 1.1 – The areas that are at risk of a Zika Virus outbreak according to a CDC report
dated 22 July 2022 are shown in the figure. Source: https://wwwnc.cdc.gov/travel/files/

zika-areas-of-risk.pdf

At present, no vaccine to prevent ZIKV is developed. Therefore, non-pharmaceutical interventions

can only help in the prevention and control of the disease. Zika risk areas have been reported and

often it is advised that pregnant women should refrain from traveling to these areas. A schematic

map of the risk areas of Zika is given in Figure 1.1. By examining this map itself we can identify

that the virus has been transmitted even across continents.

Mathematical modeling is a tool in epidemiology that helps in analyzing a disease outbreak, fore-

casting, policy making, qualitative analysis of control measures, etc. Remarkably, mathematical

epidemiological tools help in simulating experiments that are unethical to be done in reality or

are too expensive to be conducted, thereby finding cost-effective mitigation strategies to control

the spread of infectious diseases. The modeling techniques in mathematical epidemiology can be

broadly classified into statistical, mechanistic, and machine learning based according to Siettos et. al

[48]. An important set of deterministic models that can be classified under mechanistic techniques,

is the compartmental dynamics transmission models. These models divide the population under

consideration into mutually disjoint groups called compartments according to their epidemiological

status and study the temporal dynamics of the population size or proportion of these groups. The

classical SIR model proposed by Kermack and McKendrick is a major simplistic foundation for

compartmental models. This model basically considers only three compartments, namely, suscepti-

ble, infected, and removed. There are other complex versions of compartmental models that are

developed by adding new compartments like exposed, hospitalized, vaccinated, quarantined, etc. An

example of an extension is the SEIR model given in [27] where the infected compartment is divided

into asymptomatic, symptomatic, and severe categories. Another extension also can be seen in the

same article where the quarantine compartment is incorporated. Similarly, there are many such

extensions to the classical SIR model to be seen in the literature, for example [1, 6, 24]. Another im-

https://wwwnc.cdc.gov/travel/files/zika-areas-of-risk.pdf
https://wwwnc.cdc.gov/travel/files/zika-areas-of-risk.pdf
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provement to a compartmental model is incorporating a time-dependent parameter( see for eg: [26]

) or incorporating randomness to the compartmental models to obtain a continuous time Markov

chain or stochastic differential equation( see for eg: [2]). Stochastic models are relevant when the

number of infectious individuals is small or when the dependence of the parameters involved in the

disease spread process on time impacts the epidemic. A compartmental model can also be extended

to obtain multi-group models, like age-structured[44] and meta-population models. In standard and

simple epidemiological models, we always assume that the population is homogeneously mixed.

Taking spatial heterogeneity in populations into consideration, meta-population disease spread

models are proposed, which involve sub-populations of the same species and a matrix that describes

the interaction between these sub-populations. This can also be viewed as the adjacency matrix of a

directed graph, where the sub- populations form the nodes of the graph and the weights of each

edge is the rate at which these sub-populations mix among each other. The meta-population models

are further divided into two types: Lagrangian and Eulerian models. The Lagrangian models

deal with the short-term movements of the sub populations among each other and the Eulerian

approach deals with long-term movements like migration[15]. The compartmental modeling of

vector-borne diseases mostly considers two populations of different species- the humans or hosts

and the vectors or mosquitoes. The dynamical models concerning vector population age back to the

early twentieth century’s Ross-MacDonald models and their variations. In a historical review, D.L

Smith et al. present the different models of vector-borne diseases on the basis of the idea of Ross

and MacDonald[49]. A remarkable version of the Ross-Macdonald model is given by Anderson

and May[4] where the ratio of population sizes of mosquitoes to humans appears in the model.

These models are widely used for simulating and studying the spread of vector-borne diseases like

dengue, Chikungunya, Malaria, etc. A simple and intuitive model for simulating the spread of

vector-borne diseases is the SIRUV model, where S, I, R in this term represents the susceptible,

infected, and recovered compartments of the host species and U , V represent the susceptible and

infected compartments of the vector species respectively.

In this thesis, Chapter 3 discusses the SIRUV model for diseases like Zika fever which has both

vector-host and host-host pathogen transmission. This model can be seen as an extension of

the SIRUV Dengue model discussed in the literature[35, 45]. A system of ordinary differential

equations involving the different compartments from the human and mosquito species that describe

the evolution of the disease is presented and analyzed mathematically. The equilibrium points and

their local stability through the variational formulation are discussed in detail. In connection with

this, a significant threshold value, namely reproduction number, is discussed. The two methods of

finding reproduction numbers are presented and their relations are established. Later the global

asymptotic stability of the two equilibrium points are discussed, which concludes the mathematical

analysis of the model. Numerical simulations are done and exemplary scenarios to exhibit the

stability of the equilibrium points and the relation with the reproduction numbers are provided.

The dependence of the reproduction number on the different parameters is also discussed through

examples. In Chapter 4 a different scaling is incorporated into the SIRUV by redefining the
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parameters from a different perspective. Structurally, the model presented in this chapter is the

same as that of the model in Chapter 3. The involvement of the ratio of the population size of

mosquitoes to the population size of humans is one important concept that is discussed in this

chapter. Mathematical analysis is almost the same as that of the model in Chapter 3. The numerical

simulations are done to present comparative results of the two SIRUV models. The endemic

equilibrium for both models is numerically shown to be distinct and the influence of the ratio of

population sizes of the human and mosquito species in both models and its impact on the disease

dynamics is shown through exemplary scenarios, by varying the initial conditions. There are certain

assumptions that are assumed for the models discussed in Chapters 3 and 4, which might be slightly

unrealistic. The host and vector populations are assumed to have constant birth and death rates. The

population sizes of humans and mosquitoes are assumed to remain constant throughout the period

under consideration. The models discussed in Chapters 3 and 4 are both ignoring the incubation

period and latency period of the pathogen in mosquitoes and humans. Majorly, the populations of

both species are assumed to be homogeneously mixed within each other. To address the issue of

spatially heterogeneous populations, we should incorporate spatial heterogeneity in the population

under consideration.

In Chapter 5, a meta-population model is proposed as an extension to the single-patch SIRUV model

presented in Chapter 4. To involve spatial heterogeneity, the space domain under consideration is

divided into multiple smaller domains called patches and the dynamics of the disease within these

patches are modeled using a single patch SIRUV model corresponding to the intrinsic population

and the disease compartments of the intrinsic population of these patches. The heterogeneous

spread among the distinct patches is modeled using the residence time budgeting matrix. Unlike

the usual meta-population models that take into account the sub-populations of the same species,

here we let the species of hosts and vectors from different patches form sub populations and each

sub-population is divided into mutually exclusive compartments. The interaction of these sub-

populations through short-term movements between these patches is described using the residence

time budgeting matrix. The movement is restricted to the sub-population of hosts, as we assume

that vectors are not moving across the patches. This assumption is made by referring to the papers

[32, 53], by which we assumed that the mosquitoes were only moving across a few hundred meters

in their lifetime. Therefore, we assume that the mosquitoes are confined within each patch and are

considered the intrinsic mosquito population that interacts with the other patches only through the

humans visiting them. A general mathematical expression has been derived for simplifying the

quest of finding the endemic equilibrium. Similarly, a simplified mathematical expression to find

the reproduction number has been found. Using these expressions numerical results for a two-patch

model in an exemplary scenario have been presented which shows the relationship between the

value of the reproduction number and the stability of the equilibrium points of the model. Further,

we have shown different examples where the relevance of a multi-patch model has been studied and

results are presented showing how does the infection rate changes from the single-patch model with

the choice of different residence time budgeting matrices. In another numerical study, two examples

are given for which the influence of nearest neighboring commuting and non-local commuting are
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exhibited using respective residence time budgeting matrices.

In Chapter 6, a PDE model is derived from the multi-patch model for a residence time budgeting

matrix that exhibits an orthogonal movement to the nearest neighbors. In Chapter 7 we conclude

the research done for the completion of this dissertation.



2 Preliminaries

In this chapter, we give a brief introduction to the underlying concepts that are required for the

understanding of this research. The basic definitions and theoretical knowledge of dynamical

systems and the concept of stability, underlying numerical tools used in simulations, etc are

described in this chapter.

2.1 Dynamical Systems
A collection of n interrelated equations of real variables x1, x2,· · · , xn that involves ordinary derivates

of the form,
dx1

dt
= f1(t,x1,x2, · · · ,xn)

dx2

dt
= f2(t,x1,x2, · · · ,xn)

· · ·
dxn

dt
= fn(t,x1,x2, · · · ,xn)

is called a system of ordinary differential equations. The variables xi are the dependent variables

and t is the independent variable. Each equation tells us how the variable xi is varying with respect

to t. Note that the change is not random but is related to the other variables as well through fi which

are real-valued functions of the n+1 variables x1, x2, · · · , xn, and t. We may also denote this in the

vector form as follows,

X ′(t) = F(t,X(t));

where

F(t,X(t)) =


f1(t,x1,x2, · · · ,xn)

f2(t,x1,x2, · · · ,xn)
...

fn(t,x1,x2, · · · ,xn)


and X ′(t) =

(
dx1
dt ,

dx2
dt , · · · ,

dxn
dt

)T
. Here the ′ denotes nothing but d

dt .

A system is said to be linear if all functions fi involve terms of x j containing the power of 1 for all

1≤ j ≤ n. If it contains non-linear terms like x2
i , xix j, or other transcendental functions of x j’s for

eg: sin(x2) or log(x4), the system is called non-linear.
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An initial condition is an expression of the form X(t0) = X0, where t0 denotes the starting point of

the independent variable t. Usually, we take t0 = 0. A system of differential equations for which

the initial condition is specified is called an initial value problem(IVP).

Theorem 2.1 [31] Consider the initial value problem

X ′ = F(X), X(t0) = X0,

where X0 ∈Rn. Suppose that F : Rn→Rn is continuously differentiable. Then, first, there exists

a solution to this initial value problem, and second, this is the only such solution. More precisely,

there exists an a > 0 and a unique solution,

X : (t0−a, t0 +a)→Rn,

of this differential equation satisfying the initial condition X(t0) = X0.

Definition 2.2 [31] A smooth dynamical system on Rn is a continuously differentiable function

φ : R×Rn→Rn, where φ(t,X) = φt(X) satisfies

• φ0 : Rn→Rn is the identity function, φ0(X0) = X0.

• The composition φt ◦φs = φt+s for each t,s ∈R.

Note that in the definition of a dynamical system, the independent variable t is nothing but time.

For an initial value problem given by the linear system of ODEs

X ′ = AX

and an initial condition X(0) = X0, where A is an n× n real-valued matrix, the solution of

this IVP forms a smooth dynamical system on Rn given by the function φt(X0) = exp(tA)X0.

Definition 2.3 — Equilibrium point. Let X ′ = F(X) represent a system of differential equations

in Rn, a vector X∗ for which F(X∗) = 0 is called an equilibrium point for the system.

2.1.1 Stability Analysis

Definition 2.4 — Stability. Suppose X∗ ∈Rn is an equilibrium point for the differential equation

X ′ = F(X).

• X∗ is a stable equilibrium if, for every neighbourhood O of X∗ in Rn, there is a neigh-

bourhood O1 of X∗ in O such that every solution X(t) with X(0) = X0 in O1 is defined

and remains in O for all t > 0.

• If O1 can be chosen so that, in addition to the properties for stability, we have limt→∞X(t)=
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X∗, then we say that X∗ is asymptotically stable.

• If an equilibrium X∗ is not stable, it is called an unstable equilibrium point.

Let L : O → R be a differentiable function defined on an open set O ∈ Rn that contains an

equilibrium point X∗ of the system X ′ = F(X). Consider the function

L̇(X) = DLX(F(X)).

Theorem 2.5 — Lyapunov stability. [31] Let X∗ be an equilibrium point of X ′ = F(X). Let

L : O →R be a differentiable function defined on an open set O containing X∗. Suppose further

that

(a) L(X∗) = 0 and L(X)> 0 if X 6= X∗

(b) L̇≤ 0 in O−X∗

Then X∗ is stable. Furthermore, if L also satisfies

(c) L̇ < 0 in O−X∗

then X∗ is asymptotically stable.

Definition 2.6 — Lyapunov function. A function L satisfying (a) and (b) is called a Lyapunov

function of the equilibrium point X∗. If additionally, (c) holds, we call L a strict Lyapunov

function.

There is no standard method to find Lyapunov functions. Generally, an educated guess is what

gives us a Lyapunov function. If we have a strict Lyapunov function, the corresponding equilibrium

point is asymptotically stable. But in some cases even if we could only find a Lyapunov function

we can prove the asymptotic stability using the following theorem.

Theorem 2.7 — Lasalle’s Invariance Principle. [31] Let X∗ be an equilibrium point for X ′ =

F(X) and let L : U →R be a Lyapunov function for X∗, where U is an open set containing X∗.

Let P ⊂U be a neighbourhood of X∗ that is closed. Suppose that P is positively invariant

and that there is no entire solution in P−X∗ on which L is constant. Then X∗ is asymptotically

stable, and P is contained in the basin of attraction of X∗

Definition 2.8 — Basin of attraction. The set of all initial conditions with solution that tend to

the equilibrium point of a system X ′ = F(X) is called the basin of attraction of that equilibrium

point

2.1.2 Bifurcation

In a dynamical system, a bifurcation is said to occur if the qualitative structure of the flow is

changed depending upon the variation in the value of a parameter. By qualitative change, it means,
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the number of fixed points gets increased or decreased, or the stability of some fixed points gets

changed, etc. Saddle node bifurcation is a basic type of bifurcation where the fixed points are

created or destroyed with a change in the value of the bifurcation parameter. For example, consider

the ordinary differential equation given by

x′ = a+ x2

where a is the parameter under consideration.

• When a < 0, there are two equilibrium points namely x∗ =−
√

(r) and x∗ = sqrt(r).

• When a = 0, there is only one equilibrium point x = 0.

• When a > 0, there are no equilibrium points.

Another type of bifurcation that we will discuss in this thesis is transcritical bifurcation.

Definition 2.9 A transcritical bifurcation is said to occur at a bifurcation point ω , if an exchange

of stability has occurred at ω[20, 55]

2.1.3 Reproduction Number

The basic reproduction number is a crucial threshold value in population dynamics models. In

epidemiology, this threshold value of a disease outbreak is defined as the number of secondary

infections produced by one infective individual in its entire period of infectivity, when introduced

to an entirely susceptible population. in classical epidemiological models, the basic reproduction

number can be deduced as a combination of parameters and usually, we can establish a relationship

between the value of the basic reproduction number and the stability of the underlying equilibrium

points of the system that governs the disease dynamics, which equivalently answers whether the

disease prevails in the population or if it dies out. Mathematically, a combination of parameters R0,

for which R0 < 1 resulting in the disease dying out and R0 > 1 resulting in the disease pertaining,

is called the basic reproduction number of a disease spread model. Finding an analytical expression

for this threshold value and understanding the bifurcation of the model around this value is crucial

in mechanistic disease spread models. There are different methods available in the literature that

help in finding the reproduction number. In Chapter 3, we discuss two methods namely, Jacobian

and next generation method[20, 21] for finding an analytical expression for the basic reproduction

number of those models in which disease spread has two cycles namely, host-host and host-vector

and show that the reproduction numbers derived using the Jacobian and next generation matrix

are not equal and the relationship between them is not so obvious such that an equivalence in the

threshold condition is satisfied by both. But we prove that these methods give us two expressions,

both of which hold the threshold condition that is required in the mathematical definition of the

basic reproduction number.
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2.1.4 Numerical Methods

It is not always easy to find an analytical expression for the solution of a system of differential

equations. In complex non-linear systems, we may use numerical methods to find approximate

solutions. In this thesis, we are dealing with first-order non-linear systems given as in X ′ = F(X).

Each numerical method approximates the value of X(tk) in an iterative process where we find a

sequence of approximations given by Xk at each discrete time-point tk. Generally, tk’s are obtained

by starting at the initial step t0, and incrementing by small step sizes ∆t. There are different methods

available for finding the approximate solution of first-order differential equations. A very basic

numerical one-step method used in solving initial value problems involving a system of ordinary

differential equations is the Explicit-Euler method. Given an initial value of a problem, we may

iteratively obtain the solution values at the consecutive time points by the following equation.

Xn+1 = Xn +∆tF(tn,Xn)

This can be seen as updating the new point by climbing across a line with a slope given by F(tn,Xn).

An efficient numerical method in this regard can be defined as the one that approximates a solution

which is really close to the real solution. Mathematically, the efficiency of numerical methods

is measured using the convergence errors. The consistency or local error is defined as the error

occurring in one step whereas convergence error is the collective error propagated by the local errors

of all the previous steps. The order of these errors is used as a measure of the efficiency of these

numerical methods. A slightly different version of the explicit-Euler method is the implicit-Euler

method which uses the following iterative process to obtain the approximate solution.

Xn+1 = Xn +∆tF(tn+1,Xn+1).

A modified method to find the numerical solution of a system of ordinary differential equations is

the Classical Runge-Kutta method. A general set of equations that define a Runge-Kutta method of

s stages, is as follows.

Xn+1 = Xn +∆t
s

∑
i=1

biki

where

k1 = F(tn,Xn)

k2 = F(tn + c2∆t,Xn +a21k1∆t)
...

ks = F(tn + cs∆t,Xn +(
s−1

∑
i=1

asiki)∆t)

where ∑
s
i=1 bi = 1 and ∑

i−1
j=1 ai j = ci for i = 2, · · · ,s Runge-Kutta methods are modified to obtain

adaptive step-size methods or embedded Runge-Kutta methods. These methods use two Runge-

Kutta methods of order p and p−1 simultaneously and adapt the step size to make sure the error is

below a certain threshold value and that the step size is not too small to save computational cost.
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We are using such an adaptive step size method given in MATLAB by the name ’ode45’ throughout

this thesis to obtain the numerical solution of ODEs wherever it applies. ’ode45’ uses an embedded

Runge-Kutta method called Dormand-Prince method[18].



3 SIRUV model with Vector-Host and
Host-Host prevalence

3.1 Introduction to Compartmental Disease Models
Mathematical modeling of infectious disease has been useful in studying the dynamics of infectious

disease spread to make predictions about a disease outbreak and additionally to study the effect

of mitigation strategies and measures taken during the course of an outbreak. Out of different

mathematical modeling techniques to model disease spread, the most simpler one is compartmental

modeling, where a given population under consideration is divided into different compartments

and the transition dynamics between them due to events related to disease spread is the core of this

modeling approach. The standard model using this approach is the SIR model [3, 29] which was

initially proposed by W. O. Kermack and A. G McKendrick[36]. This also is a reason to refer to this

model with the name Kermack-McKendrick model. The population is divided into compartments

namely Susceptible(S), Infected(I), and Removed(R)( or Recovered). The classical SIR model

which is also known as the SIR-epidemic model[29] is given by the IVP,

dS
dt

=−β

N
IS

dI
dt

=
β

N
IS− γI

dR
dt

= γI

(3.1)

provided an initial condition ((S(0), I(0),R(0)))= (S0, I0,R0) such that S0, I0,R0≥ 0. The unknown

variables are given by,

• S(t) is the number of susceptibles in the population at time t,

• I(t) is the number of infected in the population at time t,

• R(t) is the number of removed/recovered in the population at time t.

The total population size is given by N = S+ I +R. For ease of analysis, we assume that the total

population size is constant throughout the epidemic period in all the epidemiological models within

this and the coming chapters. One may notice that this is a direct consequence of the sum of the

equations in the system given in 3.1. We also assume that the coefficients β and γ are constants

that returns the SIR model to be an autonomous IVP.
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Remark 3.1 If we have assumed that the coefficients β and/or γ are time-varying then the SIR

model given by 3.1 turns to be non-autonomous.

In the Kermack-McKendrick model, a disease spread process is defined with the assumption that

the infectivity rate varies at different stages of an infected individual. The classical SIR model is a

special case where the infectivity rate is constant for every stage of an infected individual. Another

major outlook from Hethcote[29] that has been useful in understanding the term β

N IS and why is

this used instead of the mass action law for disease spread which uses ηSV , where the term η has

a problem with its biological description. In Hethcote[29] they have discussed evidence too by

which they have concluded that η = β

N is more realistic than its alternative(η = β ) where N is

the total size of the population that is being affected. The parameter β denotes the average number

of adequate contacts per person in unit time. βS is the average number of adequate contacts of all

susceptibles in unit time, out of which β

N IS represents the infectious contacts that happen between

infected and susceptible people in unit time. The dimension of β is [number of people]−1[time]−1.

The rate of removal is given by γ . The total number of people removed either due to recovery or

death is represented by γI. To incorporate vital transitions within the compartments another version

of the SIR model is also widely used in the literature. As per Hethcote[29], we refer to this model

as the endemic-SIR model. In this case, we may call R as the recovered compartment, as removal

due to death is incorporated through other terms. This model is given by the IVP,

dS
dt

= µ(N−S)− β

N
IS

dI
dt

=
β

N
IS− γI−µI

dR
dt

= γI−µR

(3.2)

with a positive initial condition as in model 3.1, where µN and µS in the first equation denote

the birth and death of susceptibles, and the terms µI and µR in the other two equations denote

the removal from infected and recovered compartments due to death, under the assumption that

µ denotes the birth and death rate in unit time. Here γI is the transition due to recovery. Another

basic compartmental model is the SI model. This is nothing but the SIR model without the

removed/recovered compartment in the population. The SI model with vital transition is given by

the following IVP

dS
dt

= µ(N−S)− β

N
IS

dI
dt

=
β

N
IS−µI

(3.3)

Remark 3.2 The birth and death rates are assumed to be equal which is an assumption far from

reality. Another assumption made in system 3.1 is that death due to infections are not taken into
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account as a separate entity. This is also a simplification of the model that is against the real

disease scenario. In the coming models as well we are making these two assumptions.

3.1.1 Modeling vector-borne diseases

The prevalence of vector-borne diseases is of increasing importance in the present day. In epidemi-

ology, a vector is the transmitting agent of a different species other than the hosts, that spreads

the pathogen to the host species. In many cases, the vectors can be mosquitoes, for example in

diseases like Malaria, Chikungunya, West Nile Virus, Dengue, and Zika Virus. Most of these

diseases are purely vector-borne, which means that the disease prevails only due to the transmission

of the pathogen from vectors to susceptible hosts. At the same time, in the case of the Zika

Virus, the disease prevalence is due to vector-host as well as host-host transmissions. The SIRUV

model[45] describes the dynamics of disease spread in purely vector-borne diseases. It is deduced

by combining the endemic-SIR and endemic-SI models. The model is as follows

dS
dt

= µ(N−S)− α

M
V S

dI
dt

=
α

M
V S− γI−µI

dR
dt

= γI−µR

dU
dt

= ν(M−U)− ϑ

N
IU

dV
dt

=
ϑ

N
IU−νV

(3.4)

where the compartments involved are S, I, and R denoting the susceptible, infected, and recovered

classes of the host population. Similarly, the vector population is assumed to be comprised of the

susceptible and infected compartments, denoted by U and V respectively. Considering the short

life-span of mosquitoes the state of recovery is not considered. The incidence terms are as follows.

• α

MV S : vector to host infection. The parameter α denotes the average number of adequate

contacts one host is having with vectors in unit time. αS is the total adequate contacts

between the susceptible host population and vectors in unit time, out of which, only α

MV S is

the number of cases that lead to vector to host infection.

• ϑ

N IU : host to vector infection. The parameter ϑ denotes the average number of adequate

contacts one vector is having with hosts in unit time. ϑU is the total adequate contacts

between the susceptible vector population and hosts in unit time, out of which, only ϑ

N IU is

the number of cases that lead to vector to host infection.

The vital dynamics in the vector population is given by the term ν(M−U), where ν is the

birth/death rate of the vectors and M is the size of the vector population. For reference, we call this

the SIRUV -vector model, for the reason that this model is used for purely vector-borne diseases.
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3.2 Vector-host SIRUV model
The prevalence of Zika Virus is not only due to mosquitoes but humans themselves too. We are

considering a mechanistic modeling approach initially to get a set of ordinary differential equations

that describe the dynamics of different compartments that are involved in the disease spread. The

compartments are the same as in the case of the SIRUV -vector model. From this section, we denote

the population size in each compartment as s, i, r, u, and v. The total number of hosts is given

ba N and that of vectors is M. The vector-host SIRUV model is nothing but a combination of

endemic-SIR and SIRUV -vector models. The parameters involved are specified in the following

table

parameter number of adequate contacts per unit time

α per susceptible host with vectors

β per susceptible host with hosts

ϑ per susceptible vector with hosts

The disease spread between hosts and vectors is described by terms like α

M vs and ϑ

N iu. Additionally

in this model, we have an incidence from hosts to hosts which is described in the term β

N is. We

consider the vital dynamics due to birth and death as well in this model and make an assumption

that the populations under consideration have constant birth and death rates. For the host population,

we assume that after being infected they recovered permanently and entered into the compartment r

at a constant rate γ . In diseases like ZIKV, which is vector-borne with host prevalence, the dynamics

is thereby described by the following SIRUV model.

ds
dt

= µ(N− s)− α

M
vs− β

N
is

di
dt

=
α

M
vs+

β

N
is− γI−µI

dr
dt

= γi−µr

du
dt

= ν(M−u)− ϑ

N
iu

dv
dt

=
ϑ

N
iu−νv

(3.5)

Remark 3.3 As in the model given by the system of equations 3.1, here also we have that the

total population size of hosts and vectors, respectively M and N, remains constant and this can

be seen as a direct consequence of the system of equations 3.5.

This system of equations can be normalized by defining new variables as given in the following

table

S I R U V
s
N

i
N

r
N

u
M

v
M
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Note that in this case S+ I+R = 1 and U +V = 1. A host or human who goes through the infection

cycle shall pass the different stages namely susceptible, infected, and recovered. The same is

the case with vectors. A person(or vector) in a population can be at different stages of infection

throughout their lifetime. We are considering the population as a whole and the proportion of

people(vectors) at the different stages of infection collectively. In model 3.5 we are considering

the number of people at these different stages and now we consider the ratios of people who are

susceptible, infected, recovered, etc at a given time. We are modelling the evolution of these

entities as variables that change continuously with respect to time. An example is given below

by considering the first equation in 3.5, which shows the derivation of the first equation in the

normalised system.

dS
dt

=
1
N

ds
dt

=
1
N

[
µ(N− s)− α

M
vs− β

N
is
]

= µ(1−S)−αV S−β IS

In a similar way, we can deduce the normalised system, which will be referred to as the SIRUV

model in the rest of the text unless mentioned otherwise. The analysis of the normalized system is

equivalent to the standard model. The SIRUV -model is given as follows.

dS
dt

= µ(1−S)−αV S−β IS

dI
dt

= αV S+β IS− (γ +µ)I

dR
dt

= γI−µR

dU
dt

= ν(1−U)−ϑ IU

dV
dt

= ϑ IU−νV

(3.6)

Theorem 3.4 The region given by

Γ = {X = (S, I,R,U,V );0≤ S, I,R,U,V ≤ 1,S+ I +R = 1,U +V = 1}

is a positively invariant set for system 3.6 where the trajectory of an IVP involving system 3.6

and an initial condition from Γ will remain in this region for all points of time.

Proof. Let us assume that system 3.6 with a non-negative initial condition has solution X where

one or more components of X(t) hits zero for the first time at t = t0. We shall prove that the gradient

of all such components with respect to time is non-negative at t = t0. As soon as the value of the ith

component of X hits zero, for the next time steps the value of these components will either remain

zero or becomes positive. For examining this, let us assume that S(t0) = 0.

dS
dt
|t=t0 = µ ≥ 0
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Now if I(t0) = 0 then
dI
dt
|t=t0 = αSV ≥ 0

which is due to our assumptions about t0 that results in S(t0) and V (t0) being non-negative. Similarly,

we can prove that the gradient of each compartment value is non-negative at t0 which proves that

the component values are always non-negative. We may use a similar argument to prove that the

component values will always be less than 1. Let us assume that t1 is the point where any of the

components Xi meet the plane Xi = 1. We shall prove that for all the components such a scenario

will lead to a situation where the gradient of Xi is non-negative. We will consider the cases for two

components namely X1 = S and X2 = I. For all other components, the condition is held and can be

proven in a similar way. Let S(t1) = 1, all other compartmental values are then belonging to [0,1).

dS
dt
|t=t1 =−αV −β I ≤ 0

Now if in case I(t1) = 1 and all other compartmental values are belonging to [0,1), then

dI
dt
|t=t1 =−(γ +µ)+αSV +βS

We have the characteristic for compartments S, I, R that S+ I +R = 1 for all points in time. If

I(t1) = 1, then S(t1)+R(t1) = 0 which in turn gives us that S(t1) = R(t1) = 0. Using this criterion

we can deduce that
dI
dt
|t=t1 =−(γ +µ)≤ 0

A similar approach would show that the remaining components also hold this property and collec-

tively we see that Γ is positively invariant. �

Even though we need to get the values of all compartments we need not use all the equations in

model 3.6 to find out the values. As we have the properties S+ I +R = 1 and U +V = 1 we need

to find the values of S, I and V to get the solution for model 3.6. Also, we may notice that if we add

up the first and second equations in 3.6 we get the third equation. Similarly, equations 4 and 5 are

simply negations of each other. The sufficient and necessary equations form the new system

dS
dt

= µ (1−S)−αV S−β IS

dI
dt

=−(γ +µ) I +αV S+β IS

dV
dt

=−νV +ϑ I(1−V )

(3.7)

The set of deterministic equations in 3.7 forms a dynamical system. So we may also use 3.7 instead

of 3.6 and obtain the other variables like R and U using equations R = 1− (S+ I) and U = 1−V .

3.2.1 Equilibrium points

Asymptotically, disease dynamics behaves in two ways, the first case is when the disease dies out

and the second case is when the disease pertains. As t→ ∞, if the proportion of infected people
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in the population I(t) tends to 0 and the solution of the system X(t) tends to (1,0,0,1,0) we say

that the system asymptotically reached the disease-free equilibrium(DFE). Another situation is that

the disease pertains i.e., I(t)→ I∗ > 0 as t→ ∞. In this case, the solution of the system X(t)→ X∗

which is called the endemic equilibrium.

Theorem 3.5 There exists an endemic equilibrium for the one patch model 3.6, which is of the

form

(S∗, I∗,R∗,U∗,V ∗) = (1− (γ +µ)

µ
I∗, I∗,

γ

µ
I∗,

ν

ν +ϑ I∗
,

ϑ I∗

ν +ϑ I∗
),

where I∗ is a solution of the quadratic polynomial in the unknown x given by ax2 +bx+ c = 0,

for,

a =β
ϑ(γ +µ)

µ

b =− (βϑ − βν(γ +µ)

µ
− αϑ(γ +µ)

µ
− (γ +µ)ϑ)

c =ν(γ +µ−β )−αϑ ,

provided c < 0

Proof. Let X∗ = (S∗, I∗,R∗,U∗,V ∗) be an endemic equilibrium of the one-patch model 3.6. We

require to find the vector X∗ with I∗ > 0 so that

limt→∞X(t) = X∗,

for the solution of the initial value problem involving the system of equations 3.6 and some given

initial condition X(0) = X0. At endemic equilibrium, the system of equations 3.6 gives X ′ = 0

when X = X∗ which shall be expanded as follows.

µ (1−S∗)−αV ∗S∗−β I∗S∗ =0 (3.8a)

−(γ +µ) I∗+αV ∗S∗+β I∗S∗ =0 (3.8b)

γI∗−µR∗ =0 (3.8c)

ν(1−U∗)−ϑ I∗U∗ =0 (3.8d)

−νV ∗+ϑ I∗U∗ =0 (3.8e)

Using 3.8c we can deduce that R∗ = γ

µ
I∗. Adding equations 3.8a and 3.8b we get the following

relation between S∗ and I∗.

S∗ = 1− γ +µ

µ
I∗

From equations 3.8d and 3.8e we get

U∗ =
ν

ν +ϑ I∗

and

V ∗ =
ϑ I∗

ν +ϑ I∗
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respectively. Using these expressions for S∗ and V ∗ in 3.8b we get

(γ +µ)I∗−α

(
ϑ I∗

ν +ϑ I∗

)(
1− (γ +µ)I∗

µ

)
−β I∗

(
1− (γ +µ)I∗

µ

)
Multiplying this expression by ν+ϑ I∗

I∗ and simplifying gives the required quadratic polynomial in

ax2 +bx+ c = 0. It is clear that a >= 0.

c = ν(γ +µ−β )−αϑ < 0. (3.9)

Since a > 0, when c < 0, we have

1. the discriminant b2−4ac > 0 which is equivalent to having real roots.

2. c
a < 0 ⇐⇒ The two roots both have different signs.

There exists one positive root I∗ which gives us an endemic equilibrium lying in the feasible region

Γ. We can conclude that the endemic equilibrium exists if it is given that

c = ν(γ +µ−β )−αϑ < 0.

�

Corollary 3.6 The endemic equilibrium is unique provided

c = ν(γ +µ−β )−αϑ < 0

Proof. As c < 0 and a = β
ϑ(γ+µ)

µ
> 0 we have

b2−4ac > b2 > 0 (3.10)√
b2−4ac > |b| (3.11)

We get two distinct real roots for the polynomial aI2+bI+c = 0. But the solution which is feasible

requires that it should be positive. We will take two possible cases.

• If b >= 0

Clearly −b−
√

b2−4ac < 0. In this case |b|= b and 3.11 implies that −b+
√

b2−4ac > 0.

• If b < 0

Again −b+
√

b2−4ac > 0. Here |b|=−b and 3.11 implies that −b−
√

b2−4ac < 0.

Simultaneously both roots will not be positive or negative. In all cases I∗ = −b+
√

b2−4ac
2a is the

feasible solution �
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The behaviour of the non-linear system at an equilibrium point can also be understood from

analysing the linearised system at that equilibrium state( See pp: 151, 152 in [50] for a 2-dimensional

analogue of this statement with derivation). Let X(t) = (S(t), I(t),R(t),U(t),V (t))T be the 5-

dimensional variable whose change with respect to time is represented by the system of equations

3.6, which can be simply written as

X ′ = F(X(t)) =



µ (1−S)−αV S−β IS

−(γ +µ) I +αV S+β IS

γI−µR

ν(1−U)−ϑ IU

−νV +ϑ IU


(3.12)

where X ′ denotes d
dt X . The variational equation along the solution of 3.12 with initial state X0 being

the DFE, is an autonomous linear system[31] given by

W ′ = DFX0W

where DFX0 denotes the Jacobian matrix of F evaluated at X0 and W = X −X0. This system is

called the linearised system at the disease-free equilibrium.
Definition 3.7 — Hyperbolic Equlibrium Point. An equilibrium point X0 of a nonlinear system

is hyperbolic if all of the eigen values of DFX0 have nonzero real parts

We will discuss the hyperbolicity of the disease-free equilibrium of the system of equations 3.12 in

the next section. The linearisation theorem in [31] states that the nonlinear flow of an n-dimensional

system X ′ = F(X) is conjugate to the flow of the linearised system in a neighbourhood of a

hyperbolic equilibrium point X0 of the system. Two maps are conjugate means, they have equivalent

dynamics ie; all topological features should be preserved when the homeomorphism transforms

one map to another. A definition of conjugacy in the two-dimensional scenario is given in Chapter

4 of [31].

3.2.2 Basic Reproduction Number

A crucial threshold value in connection with population dynamics models is the basic reproduction

number. In epidemiology, whether the disease dies out or if it pertains can be deduced from this

threshold value. Reproduction number is the value of a combination of parameters which gives us

the secondary cases that one infected individual produces in a completely susceptible population.

• The reproduction number can be found using the Jacobian approach and next-generation

matrix method
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Jacobian approach

We take the flux part of the normalised system given as follows

F(X) =



µ(1−S)−αV S−β IS

−(γ +µ)I +αV S+β IS

γI−µR

ν(1−U)−ϑ IU

−νV +ϑ IU


The jacobian of this vector-valued function at the disease-free equilibrium(DFE) is given by

J =
∂F
∂X
|(1,0,0,1,0) =



−µ −β 0 0 −α

0 −(γ +µ)+β 0 0 α

0 γ −µ 0 0

0 −ϑ 0 −ν 0

0 ϑ 0 0 −ν


(3.13)

We want this matrix to have all eigenvalues negative in order to make sure that the DFE

is locally asymptotically stable. The characteristic polynomial given by |J− λ I| = 0 is

expressed as

[−µ−λ ][−µ−λ ][−ν−λ ][λ 2 +λ (ν + γ +µ−β )+ν(γ +µ−β )−αϑ ] = 0

The first three eigenvalues of J are µ ,µ and ν . The rest of the eigenvalues are the roots of the

polynomial

[λ 2 +λ (ν + γ +µ−β )+ν(γ +µ−β )−αϑ ] = 0 (3.14)

Theorem 3.8 (Routh-Hurwitz Criterion)[41] Consider the nth- degree polynomial with

real coefficients

P(λ ) = λ
n +a1λ

n−1 + · · ·+an−1λ +an.

Define n Hurwitz matrices using the coefficients ai of the characteristic polynomial:

H1 = (a1) H2 =

(
a1 1

a3 a2

)
H3 =


a1 1 0

a3 a2 a1

a5 a4 a3


and

Hn =



a1 1 0 0 . . . 0

a3 a2 a1 1 . . . 0

a5 a4 a3 a2 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . an
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where a j = 0 if j > n. All roots of the polynomial P(λ ) are negative or have a negative

real part if and only if the determinants of all Hurwitz matrices are positive:

detH j > 0, j = 1, · · · ,n.

By Routh-Hurwitz criteria the roots of the quadratic polynomial 3.14 are both negative if the

coefficients a1 and a2 are both positive following which we get two conditions,

ν + γ +µ−β > 0 (3.15)

ν(γ +µ−β )−αϑ > 0 (3.16)

Theorem 3.9 The condition 3.16, for the set of parameters of the model 3.6 implies

condition 3.15.

Proof. Let us assume that

ν(γ +µ−β )−αϑ > 0

As α and ϑ are non-negative we have,

ν(γ +µ−β )≥ 0

⇒ ν(γ +µ−β )>−ν
2

⇒ ν(γ +µ−β )+ν
2 > 0

which in turn implies condition 3.15 �

If condition 3.16 is true, it is also equivalent to the following expression

β

γ +µ
+

αϑ

ν(γ +µ)
< 1

This gives us the reproduction number given by

RJ
0 =

β

γ +µ
+

αϑ

ν(γ +µ)
(3.17)

so that if RJ
0 < 1 it implies both 3.15 and 3.16 are true, which in turn gives us that the eigen

values of the Jacobian are all negative. This guarantees that the disease-free equilibrium is

locally asymptotically stable when RJ
0 < 1. In this expression, RHH = β

γ+µ
can be defined as

the secondary infections in the susceptible host population due to the infective host introduced.

This is also the product of infection rate and death-adjusted infectious period that is given as

the reproduction number for the endemic SIR model, which is nothing but a SIR model with

vital dynamics (See pp. 607-608 in [29]). The second term is the combination of two terms.

– RHV = ϑ

γ+µ
which is the number of secondary infections one infected host produces in

the whole susceptible population of vectors.
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– RVH = α

ν
which is the number of secondary infections one infected vector will produce

in an entirely susceptible host population (see also pp. 108-109 in [41]).

So the reproduction number using the Jacobian approach is given by

RJ
0 = RHH +RHV RVH (3.18)

Additionally, the Jacobian at DFE has all its eigenvalues with non-zero real parts, which in

turn guarantees the hyperbolicity of the disease-free equilibrium.

Theorem 3.10 RJ
0 > 1 ⇐⇒ ν(γ + µ −β )−αϑ < 0. The endemic equilibrium exists

and is unique provided RJ
0 > 1

Proof. By the definition of RJ
0, we have that

RJ
0 > 1

⇐⇒ β

γ +µ
+

αϑ

ν(γ +µ)
> 1

⇐⇒ νβ +αϑ > ν(γ +µ)

⇐⇒ ν(γ +µ−β )−αϑ < 0

By theorem 3.5 and corollary 3.6, we can easily deduce that the endemic equilibrium exists

and is unique only if RJ
0 > 1 �

The next generation matrix approach[20, 21]

To find the reproduction number using the next generation matrix we have to divide the

compartments into disease(x) and non-disease(y) compartments. The flux part of the set of

equations involving x is divided into a disease flux(F), which includes all terms that define

the new infections, and the term V which represents the transition terms like death, recovery

etc.

We choose x = [I,V ]T and y = [S,R,U ]T . The terms F and V are given below

F =

(
αV S+β IS

ϑ IU

)
and V=

(
(γ +µ)I

νV

)

In the derivation of the next generation matrix, we consider this idea of analysing the

stability of the linearised system at DFE. For this, we rewrite the variable vector as X =

(I,V,S,R,U)T = (x,y)T . The linearised system at DFE is

X ′ = DFX0(X−X0)
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Since X is rewritten, 3.13 is also rearranged as

DFX0 =



−(γ +µ)+β α 0 0 0

ϑ −ν 0 0 0

−β −α −µ 0 0

γ 0 0 −µ 0

−ϑ 0 0 0 −ν


(3.19)

which is of the block matrix form

DFX0 =

(
F̂−V̂ 0

J21 J22

)

where

F̂ =
∂F

∂x
|DFE =

(
β α

ϑ 0

)
and V̂ =

∂V

∂x
|DFE =

(
γ +µ 0

0 ν

)

The disease-free equilibrium is locally asymptotically stable if all the eigenvalues of the

Jacobian matrix have negative real parts. The eigenvalues of DFX0 are nothing but the

eigenvalues of F̂ − V̂ and J22. Since J22 is clearly a diagonal matrix with negative real

numbers as entries we need to only focus on the eigenvalues of F̂−V̂ . In other words, the

linear stability of the linearised system of 3.12 is completely determined by the linear stability

of

x′ = (F̂−V̂ )x

We may notice that the quadratic polynomial deduced in the derivation of the reproduction

number using the Jacobian approach is the characteristic polynomial of F̂−V̂ .
Lemma 3.11 — see Lemma 2 in [20]. If F is non-negative and V is a non-singular

M-matrix, then R0 = ρ(FV−1) < 1 if and only if all the eigenvalues of (F −V ) have

negative real parts.

A proof for this is given in Lemma 2(also see Lemma 1) of [20]. The eigenvalues of F̂−V̂ has

negative real parts if and only if ρ(F̂V̂−1)< 1. By the definition of the basic reproduction

number, for a classical epidemic SIR model R0 can be expressed as the product of the

expected duration of the infectious period and the rate at which secondary infections occur(

see [29] p. 605) whereas, for the SIR model with vital dynamics, R0 is the product of contact

rate and the death-adjusted infectious period which is given by 1
γ+µ

, where µ is the death

rate of the population under consideration(see [29] p. 608). On a general compartmental

epidemic model, this heuristic definition is not sufficient. Rather a mathematical explanation

in [20] shows that the next generation matrix FV−1 is in compliance with the heuristic

definition of the process of producing secondary infections due to the presence of one

infected individual(see also [21]).
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In this case, the next generation matrix is K = F̂V̂−1 and the basic reproduction number(RNGM
0 )

is the spectral radius of this matrix. Thereby

RNGM
0 = ρ(K) =

β

2(γ +µ)
+

[(
β

2(γ +µ)

)2

+
αϑ

ν(γ +µ)

] 1
2

(3.20)

=
RHH

2
+

[(
RHH

2

)2

+RHV RVH

] 1
2

(3.21)

Though, we failed to interpret this expression as the number of secondary infections, one

infectious host individual will produce in a completely susceptible population, as in the case

of the threshold value obtained through the Jacobian approach.

3.2.3 Relationship between RNGM
0 and RJ

0

In a similar compartmental model, that describes the dynamics of vector-borne diseases given

in [41] they have established an obvious relationship between RNGM
0 and RJ

0 which is that the

reproduction number obtained using the Jacobian approach is the square of the reproduction

number obtained using the next generation matrix approach. This holds for purely vector-borne( for

eg: dengue) disease models. In this case, we are having a human-human spread as well which gives

us a relationship with the two threshold values that is not trivial. In this case, we can establish that

RJ
0 = RNGM

0
2
+2a(1−RNGM

0 ) (3.22)

using 3.17 and 3.20, where a = β

2(γ+µ) . Even though RNGM
0 could not be interpreted as a reproduc-

tion number, both RNGM
0 and RJ

0 hold certain relationships by which it can be proven mathematically

that, R0 > 1 implies that the disease pertains(asymptotic stability of Endemic equilibrium) and

R0 < 1 implies that the disease dies out ()asymptotic stability of DFE) which is enough for them to

be named as reproduction numbers for a disease spread model.

Theorem 3.12 Let y = x2 +2a(1− x) where a,x,y > 0, for 2a < 1, we have

(a) x < 1 implies y < 1

(b) x > 1 implies y > 1

Proof. (a) Let us assume that x < 1. Then we have

x2 < x (3.23)

Since it is given that 2a < 1 and since 1− x > 0 we have that

2a(1− x)< 1− x (3.24)

Adding 3.23 and 3.24 gives us

y = x2 +2a(1− x)< x+1− x = 1
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(b) Let us assume that x > 1 which gives us

x2 > x (3.25)

In this case x−1 > 0. Since 2a < 1, we have

2a(x−1)< x−1

=⇒ 1 < x−2ax+2a

=⇒
3.25

1 < x−2ax+2a < x2−2ax+2a = y

�

Figure 3.1 – The figure shows RJ
0 as a function of RNGM

0 . Here we have used the relation 3.22. The
function is plotted for different values of a and it is clearly seen that for 0 < a≤ 1

2 only the required
threshold property holds. For a > 1

2 , we may ignore the dashed region, because given a and b are
positive, the case of a > 1

2 and RNGM
0 being less than 1 is not feasible.

Theorem 3.13 For RNGM
0 and RJ

0 we have

(a) RNGM
0 ≤ 1 ⇐⇒ RJ

0 ≤ 1

(b) RNGM
0 > 1 ⇐⇒ RJ

0 > 1

Proof. For simplicity we may use, a = β

2(γ+µ) and b = αϑ

ν(γ+µ) . Note that a > 0 and b > 0 for all

parameters being positive. Let a > 1
2 ,

a2 >
1
4

=⇒ a2 +b > a2 >
1
4
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=⇒ (a2 +b)
1
2 >

1
2

=⇒ a+(a2 +b)
1
2 > 1 =⇒ RNGM

0 > 1

Similarly, if a > 1
2 , we have RJ

0 > 1. So for RNGM
0 ≤ 1 or RJ

0 ≤ 1, due to the positivity of b, a≤ 1
2

should hold.

(a) If RNGM
0 ≤ 1 we have a≤ 1

2 and this implies RJ
0 ≤ 1 by theorem 3.12 part (a).

On the other hand if RJ
0 < 1

=⇒ 2a+b < 1

=⇒ b < 1−2a

=⇒ a2 +b < 1−2a+a2

=⇒
1−a>0

(a2 +b)
1
2 < 1−a

=⇒ RNGM
0 < 1

(b) If a < 1
2 and RJ

0 > 1, a similar argument as above proves that RNGM
0 > 1

On the other hand, for a < 1
2 , if RNGM

0 > 1 we have RJ
0 > 1, by part (b) of theorem 3.12.

For a < 1
2 , we have already shown that both RNGM

0 and RJ
0 are greater than 1.

�

As we have already seen that RJ
0 < 1 ensures local asymptotic stability of 3.12, from theorem 3.13,

we may conclude that mathematically RNGM
0 also can be seen as the threshold value that determines

the stability of DFE.

3.2.4 Global Stability using Lyapunov function

We make use of a matrix-theoretic method suggested in [47] to find out a Lyapunov function at the

disease-free equilibrium and the graph-theoretic method to construct a Lyapunov function at the

endemic equilibrium
Definition 3.14 (Sharp Threshold Property) A given model satisfies the sharp threshold property

if it holds that

the DFE is globally asymptotically stable for R0 ≤ 1

•• there is a unique endemic equilibrium X∗ that is globally asymptotically stable in the

interior of the feasible region for R0 > 1

Theorem 3.15 Let

Q =
R0I
α

+
V
ν
,
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then Q′ ≤ 0 when R0 ≤ 1 in Γ = {X : 0 ≤ X(i) ≤ 1,S+ I +V ≤ 1,U +V ≤ 1} where X =

(S, I,R,U,V ),

Proof. We begin the proof by establishing an important result with respect to RNGM
0 which is used

further. From the relation 3.22 between RNGM
0 and RJ

0, we can deduce that R0 holds the following

equation,

R0 =
β

γ +µ
+

αϑ

ν(γ +µ)R0
(3.26)

for R0 = RNGM
0 . From the expression of Q, we have that,

Q′ =
R0

α
I′+

V ′

ν

=
R0

α
(−(γ +µ)I +αV S+β IS)+

1
ν
(−νV +ϑ IU)

=

(
R0

α
(−(γ +µ)I)−V

)
+

(
R0

α
(αV S+β IS)+

1
ν

ϑ IU
)

=

(
R0

α
(−(γ +µ)I)−V +R0V +

R0

αβ
I +

1
ν

ϑ I
)

+

(
−R0V − R0

αβ
I− 1

ν
ϑ I +R0V S+

R0

αβ
IS+

1
ν

ϑ IU
)

=
R0

α
(γ +µ)I

(
−1+

β

γ +µ
+

αϑ

ν(γ +µ)R0

)
+(R0−1)V

−
(

R0V (1−S)+
R0

αβ
I(1−S)+

1
ν

ϑ I(1−U)

)
Here it is evident that

W (S, I,V ) =

(
R0V (1−S)+

R0

αβ
I(1−S)+

1
ν

ϑ I(1−U)

)
≥ 1

on the set Γ. So we have that,

Q′ ≤R0

α
(γ +µ)I

(
−1+

β

γ +µ
+

αϑ

ν(γ +µ)R0

)
+(R0−1)V

=
3.26

R0

α
(γ +µ)I (−1+R0)+(R0−1)V

=(R0−1)
(

R0

α
(γ +µ)I +V

)
Since

(R0
α
(γ +µ)I +V

)
≥ 0 we can conclude that

Q′ ≤ 0 only if R0 ≤ 1.

�
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Theorem 3.16 The SIRUV model 3.6 holds the sharp threshold property.

Proof. To prove the first condition of the sharp threshold property we are finding the Lyapunov

function corresponding to the DFE. We make use of the theorem 2.1 of [47]. For finding the

Lyapunov function we need to find the left eigenvector of V̂−1F̂ which is given by

w =

(
R0(γ+µ)

α

1

)

The Lyapunov funcion is given by Q = wTV̂−1x

Q =
R0I
α

+
V
ν

where R0 here denotes the RNGM
0 . We prove in the theorem 3.15 that Q′ ≤ 1 in Γ = {X : 0≤ Xi ≤

1,S+ I+R≤ 1,U +V ≤ 1}, where X = (S, I,R,U,V )if R0 =RNGM
0 ≤ 1, and thus Q is a Lyapunov

function for the DFE. Also, the only invariant set where x = 0 is a singleton set containing the

DFE. So by LaSalle’s invariance principle[37], DFE is globally asymptotically stable in Γ. Also by

theorem 2.2 of [47], we have that the Lyapunov function Q can also be used to prove the uniform

persistence and thus establish the existence of an endemic equilibrium. Therefore theorem 2.2 of

[47] gives that if R0 > 1, then the DFE is unstable and that system 3.6 is uniformly persistent and

there exists at least one endemic equilibrium.

We have already proven the existence of a unique endemic equilibrium given RJ
0 > 1 in 3.10. And

since we have that the threshold condition is equivalent for RJ
0 and RNGM

0 by 3.13, it is evident that

a unique endemic equilibrium exists also when R0 = RNGM
0 < 1.

Now we prove that when R0 > 1 we have global asymptotic stability of endemic equilibrium. For

this, we construct the Lyapunov function for endemic equilibrium using the graph-theoretic method

suggested in [47]. Let us define

D1 = S−S∗−S∗ln
S
S∗

+ I− I∗− I∗ln
I
I∗

D2 =
1
2
(U−U∗)2

D3 =V −V ∗−V ∗ln
V
V ∗

We show that there exist constants ai j and functions Gi j : Z → R for which we can deduce the

inequality D′i ≤ ∑
n
j=1 ai jGi j(z) for z ∈ Z where Z = int(Γ), where Γ is the feasible region of model

3.6.

D′1 = S′−S∗
(

S∗

S
S′

S∗

)
+ I′− I∗

(
I∗

I
I′

I∗

)
=

S−S∗

S
S′+

I− I∗

I
I′

The first term of this equation can be written as

S−S∗

S
S′ =

S−S∗

S
(µ−µS−αV S−β IS).
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At endemic equilibrium, precisely by using 3.8a, we have

µ = µS∗+αV ∗S∗+β I∗S∗.

Using this we get

S−S∗

S
S′ =

S−S∗

S
(µ(S∗−S)+α(V ∗S∗−V S)+β (I∗S∗− IS))

≤ S−S∗

S
(α(V ∗S∗−V S)+β (I∗S∗− IS))

= αV ∗S∗(1− V S
V ∗S∗

− S∗

S
+

V
V ∗

)+β I∗S∗(1− IS
I∗S∗
− S∗

S
+

I
I∗
)

Now we make use of the inequality 1+ x≤−lnx provided x≥ 0 to get

1− S∗

S
≤−ln

S∗

S
=−ln

V S
V ∗S∗

− ln
V
V ∗

(3.27)

and we make use of the same method to get the inequality (which is used in the second part)

1− S∗

S
≤ ln

IS
I∗S∗
− ln

I
I∗

which together give that

S−S∗

S
S′ ≤ αV ∗S∗(ln

V S
V ∗S∗

− V S
V ∗S∗

− ln
V
V ∗

+
V
V ∗

)+β I∗S∗(ln
IS

I∗S∗
− IS

I∗S∗
− ln

I
I∗

+
I
I∗
)

Again by making use of the logarithmic inequality we get

1− S
S∗
≤−ln

S
S∗

=−ln
SI

S∗I∗
+ ln

I
I∗

and

1− SV
S∗V ∗

I∗

I
≤−ln

SV
S∗V ∗

I∗

I
=−ln

SV
S∗V ∗

+ ln
I
I∗

which in turn gives us the following inequality,

I− I∗

I
I′ ≤ β I∗S∗(

IS
I∗S∗
− ln

IS
I∗S∗
− I

I∗
+ ln

I
I∗
)+αV ∗S∗(

V S
V ∗S∗

− ln
V S

V ∗S∗
+ ln

I
I∗
− I

I∗
)

This collectively gives us

D′1 ≤ αS∗V ∗(−ln
V
V ∗

+
V
V ∗

+ ln
I
I∗
− I

I∗
) = a13G13 (3.28)

By differentiating D2 and using equation 3.8d we get

D′2 = (U−U∗)U ′

= (U−U∗)(ν(U∗−U)+(U−U∗)ϑ(I∗U∗− IU)

≤ (U−U∗)ϑ(I∗U∗− IU∗+ IU∗− IU)

= (U−U∗)ϑU∗(I∗− I)+(U−U∗)ϑ(U∗−U)I

= (U−U∗)ϑU∗(I∗− I)−ϑ(U−U∗)2I

≤ ϑU∗(U−U∗)(I∗− I)
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We could write this inequality because ϑ(U−U∗)2I is positive. We also have that

ϑ(U−U∗) = (V −V ∗).

By using this we have

D′2 ≤ ϑ(V −V ∗)(I∗− I)

= a23G23

(3.29)

Similarly

D′3 = (1− V ∗

V
)V ′

= (1− V ∗

V
)(−νV +ϑ I(1−V ))

=
3.8e

(1− V ∗

V
)(−ϑ I∗(1−V ∗)

V
V ∗

+ϑ I(1−V ))

= (1− V ∗

V
)ϑ(− I∗V

V ∗
+ I∗V + I−V I)

= ϑ(− V
V ∗

+1+
I
I∗
− I

I∗
V ∗

V
)+ϑ I∗V ∗(

V
V ∗
−1− V I

V ∗I∗
+

I
I∗
)

≤ ϑ I∗(− V
V ∗

+
I
I∗
− ln

I
I∗

+ ln
V
V ∗

)+ϑ(I− I∗)(V −V∗)

This inequality can be simplified as

D′3 ≤ a31G31 +a32G32 (3.30)

where a31 = ϑ I∗ and a32 = ϑ . The required Lyapunov function is defined as

D = c1D1 + c2D2 + c3D3

which returns that D′ ≤ 0, using 3.28, 3.29 and 3.30, for the choice c1 = ϑ I∗, c2 = α
S∗V ∗
U∗ and

c3 = αS∗V ∗. Even though in this case it is evident that D′ ≤ 0, without going deeper into the very

the general setting of the graph-theoretical results used in [47], we see that the matrix A = [ai j]

forms a weighted directed graph containing three nodes and two cycles which could be used in

Theorem 3.5 of [47]. The cycle comprising of nodes 1 and 3 holds that the associated functions G13

and G31 add up to zero. The same holds for functions associated with nodes 3 and 2. In the current

setting, we need not use many details of the graph-theoretic method as it is evident that D′ <≤ 0 in

int(Γ), though we acknowledge the fact that this simplified approach was obtained in an attempt to

apply the graph-theoretic method in [47].

1 3 2

a31

a13

a23

a32
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Since D is not a strict Lyapunov function, we need to utilize the Lasalle Invariance Principle to

obtain global asymptotic stability of the endemic equilibrium. Since the largest invariant set in

which D′ = 0 is W = {X∗}, we conclude that X∗ is globally asymptotically stable(GAS)using the

Lasalle Invariance Principle[31]. �

To conclude with the discussion of global asymptotic stability, we summarize that when R0 ≤ 1,

DFE is the only equilibrium for the system 3.6 and it is GAS in the positively invariant set of model

3.6, namely Γ = {X = (S, I,R,U,V ) : 0 ≤ X(i) ≤ 1,S+ I +R ≤ 1,U +V ≤ 1} and when R0 > 1

there also exists a unique endemic equilibrium in the interior of Γ. Then we have that in the interior

of Γ the endemic equilibrium is GAS.

Remark 3.17 In the case, R0 = 1, we see that Q′ = 0 implies W (S, I,V ) = 0 and it is true if and

only if, (S,U) = (1,1) or (I,V ) = (0,0). In both cases, we can verify that the largest invariant

set for 3.6 where (S,U) = (1,1) or (I,V ) = (0,0) is the singleton set with DFE.

Remark 3.18 The threshold point R0 = 1 corresponds to a transcritical bifurcation[20, 55] for

model 3.6. There is an exchange of stability occurring at R0 = 1.

3.3 Numerical Results
For numerical studies, we have used model 3.7 in this section. Firstly we have set the parameters

to certain values for which the model exhibits the scenario of disease dying out or the DFE is

asymptotically stable, and another set of parameters for which the endemic equilibrium being

asymptotically stable. An exemplary scenario is simulated with the choice of parameters as per

Table 3.1. The death rate(birth rate) of hosts and vectors is taken as the reciprocal of the average

life expectancy. Here we use the value 65 years as the life expectancy of humans and 10 days

as that of vectors, as per [45]. The population size of hosts is fixed as N = 7000 and the vector

population’s size is fixed as M = 105. The proportion of initial susceptible hosts, infected hosts and

infected vectors are taken as [S, I,V ] = [0.2032,0.0142,0.0617]. For this initial condition and the

set of parameters, the two scenarios are obtained by varying the rate of recovery, γ . In figure 3.2,

Parameter value units

µ 1/(65∗365) [days−1]

ν 1/10 [days−1]

α 0.008 [days−1]

β 0.01 [days−1]

ϑ 0.4 [days−1]

Table 3.1 – Parameters are fixed except the recovery rate



3.3 Numerical Results 33

(a) For R0 > 1 Endemic equilibrium EE is asymptoti-

cally stable

(b) For R0 < 1 disease-free equilibrium DFE is asymp-

totically stable

Figure 3.2 – Both figures have a final time t = 30000 days. The figures are plotted for the parameters
defined above in Table 3.1. The first case is for the choice of γ = 0.008. In Figure (a) we can see that a
spiral is formed and as time tends to ∞ the solution curve is approaching the endemic equilibrium. In
the title of the figure, the two reproduction numbers can be seen as greater than 1. At the same time for
the choice of γ = 0.8, we can see that the solution curve is approaching the disease-free equilibrium
[1,0,0] and the reproduction numbers are less than 1 for this case.

part (a) we can see that, for the choice of γ = 0.008 we obtained the endemic equilibrium to be

asymptotically stable. At equilibrium the proportions are given by S∗ = 0.1939, I∗ = 0.0042 and

V ∗ = 0.0166. The number of infected (i∗) hosts can be deduced as i∗ = N ∗ I∗ ≈ 29. Similarly s∗

and v∗ can be obtained from S∗ and V ∗. Then the recovered number of people at equilibrium can be

obtained using r∗ = N− s∗− i∗. Similarly, the number of susceptible mosquitoes at equilibrium can

be obtained as M−V ∗. In Figure 3.2, part (b), we see that for the choice of γ = 0.8, the disease-free

equilibrium is asymptotically stable. The phase portraits are given in Figure 3.2.

It is also interesting to see that for the case R0 > 1, however close the initial condition is to the

DFE, the trajectory goes asymptotically towards the equilibrium point. To exhibit this property we

use the same set of parameters as in [35] which is used for simulations of a SIRUV -vector model.

The set of parameters is as given in Table 3.2. The population size of hosts is fixed as N = 105

and the vector population’s size is fixed as M = 10∗N = 106. The only parameter that has to be

chosen is the host-host transmission rate β . This is chosen as β = 1/7. The sizes of host and vector

populations are the same as in the previous simulation study. The simulation results can be seen in

the phase portraits given in Figure 3.3.
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Parameter value units

µ 1/(72∗365) [days−1]

ν 1/10 [days−1]

α 1/7 [days−1]

ϑ 5ν [days−1]

γ 1/14 [days−1]

Table 3.2 – Parameters in [35] are defined per year, which we have converted to parameters per day

(a) I0 = 0 (b) I0 = 0.001 (c) I0 = 0.1

(d) I0 = 0.3 (e) I0 = 0.7 (f) I0 = 1

Figure 3.3 – In fig (a) the initial condition InC(red) being (1,0,0) the trajectory is not seen because
DFE(violet) is an equilibrium. In Fig (b) it can be seen that the disease-free equilibrium (DFE) is very
close to the initial point. Even then the trajectory is moving towards the endemic equilibrium(green).
The same does the trajectory for any other initial condition in the interior of Γ as seen in Figures(c), (d),
(e) and (f). All plots are made for a final time of 5 years.

The simulations are done for initial conditions where the number of infected vectors always

remains zero initially. The initial infected proportion of hosts I0 is varied within the set of values

{0%,0.1%,10%,30%,70%,100%}. The susceptible proportion of hosts is taken as 1− I0. For the

chosen set of parameters, the reproduction numbers are RNGM
0 = 2.5021 and RJ

0 = 5.7085. The

endemic equilibrium is

EE = (0.0683,4.9605∗10−4,0.0024).
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3.3.1 Parameter Analysis

For studying the dependence of RNGM
0 on the recovery rate(γ) and the transmission rates among

humans(β ) and that from vectors to humans(α) we have plotted in Figure 3.4, the reproduction

number RNGM
0 , as a function of α and β for different values of γ ranging between 0.25, 1 and 2.5.

All other parameters and population sizes are fixed to the constants as per the following table.

µ ν ϑ

10/(1000*365) 1/14 0.4

Even though the host population and vector population sizes do not play any role in the formulation

of reproduction number, we have taken the case that N = 5000 and M = 10000. Within the surface

plot itself the lighter-colored region represents the case where RNGM
0 < 1 and the darker part

represents the values for which RNGM
0 > 1. In the 2D view in Figure 3.4, the function RNGM

0 is

plotted for three different cases by varying the recovery rate and below each line representing

γ value we can see the darker region(including the regions for the smaller values of γ) which

represents the area where RNGM
0 < 1 and the whole region above this line is representing the case

when RNGM
0 > 1. We see that, as the recovery rate increases the chances of RNGM

0 < 1 increase and

thus the disease free equilibrium is globally asymptotically stable for more combinations of β and

α .

Figure 3.4 – For different values of the recovery rate γ , the reproduction number RNGM
0 is plotted

as a function of the vector-host transmission rate α and host-host transmission rate β . In the first
figure, a 3-dimensional view can be seen, where the lighter region represents the values of α and β for
which RNGM

0 < 1 and the whole darker region represents the case when RNGM
0 > 1. For the vector-host

transmission rate α and host-host transmission rate β for γ = 0.25 the set of parameters for which
RNGM

0 < 1 is smaller compared to a possible combination of α and β , for which the reproduction
number is greater than 1. As γ gets larger the set of values α and β for which RNGM

0 < 1 is increasing.
In the second figure we have a 2-dimensional view of this, where for each γ the region below each
line represents the case RNGM

0 < 1, and that above the line represents the case in which RNGM
0 > 1. A

similar trend is seen in this 2-dimensional view as well, that as γ increases the range of the set of α and
β values for which RNGM

0 < 1 is also getting bigger in size.



4 Vector-host SIRUV model- A different
scaling

In Chapter 3, we have seen how the SIRUV model is derived for diseases that involve a transmission

due to an interaction between vectors and hosts and also due to a host-host interaction. We have

done the mathematical analysis on the normalized model 3.6. In this chapter we redefine the

parameters and obtain a similar model but with a different set of coefficients. Unlike model 3.6, a

major difference is that the ratio of sizes of the vector as well as host populations directly appears

in the normalized system of differential equations and we would see the differences in both models

through the parameters. The mathematical analysis of the new model would be similar to the model

3.6.

4.1 Model Formulation and Analysis
As in Chapter 3, we have the host and vector populations divided into mutually exclusive compart-

ments namely, s, i,r,u and v which represent the size of each compartment in numbers. The total

number of hosts(N) and vectors(M) in the system is assumed to remain constant. All parameters

like recovery rate, birth rate and death rate of hosts and vectors are defined the same as that of

the model in Chapter 3. We consider the vital dynamics due to birth and death as well in this

model and make an assumption that the populations under consideration have constant birth and

death rates. The birth rate and death rate are assumed to be equal respectively for the host and

vector populations. For the host population, we assume that after being infected they get recovered

permanently and enter into the compartment r at a constant rate γ .

4.1.1 Redefining the Transmission Parameters

In this section, we propose a different definition for the transmission rates from that of Chapter 3.

This also brings a difference in the way the incidence terms are formulated in the new model. The

disease transmission parameters are defined as follows,

• The parameter corresponding to host-host interaction, β is defined as the average number of

adequate contacts that is happening per infected host with hosts per unit time. The dimension

of β is [time−1].

• The parameter corresponding to vector to host incidence, α is defined as the average number

of adequate contacts that is happening per infected mosquito with hosts per unit time. The

dimension of α is [time−1][mosquitopopulation−1][host population].
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• The parameter corresponding to host to vector incidence, ϑ is defined as the average number

of adequate contacts that is happening per infected host with mosquitoes per unit time. The

dimension of ϑ is [time−1][host population−1][mosquitopopulation].

The incidence terms appearing in the new model are described as follows,

Host to Host incidence: If unit time is a day, the total number of contacts that an infected host has

with hosts in a day is given by β , out of which β
i
N or β

r
N does not result in an infection. The

proportion of all adequate contacts of this infected host with hosts that lead to an infection is

therefore those with the susceptible fraction of the host population, given by β
s
N . So the total

number of infections as a whole would be β
s
N i.

Vector to Host incidence: By its definition, α is from the perspective of an infected mosquito.

In a day it has α contacts with hosts and the proportion of these contacts with infected

or recovered individuals does not lead to an infection. As above, the average number of

adequate contacts this mosquito has with susceptible proportion, given by α
s
N only leads to

incidence from vector to host. The total number of such incidences is given by α
s
N v.

Host to Vector incidence: The host to vector incidence is through the parameter ϑ , which is seen

from the perspective of an infected host, where this individual has ϑ adequate contacts with

mosquitoes in a day, out of which, only ϑ
u
M contacts lead the infection to pass from this

infected host to the vector population. And ϑ
u
M i is the total number of such incidences.

The dynamics of change in the population size of each compartment is thereby described by the

following SIRUV model.

ds
dt

= µ (N− s)− α

N
sv− β

N
si

di
dt

=
α

N
sv+

β

N
si− (γ +µ) i

dr
dt

= γi−µr

du
dt

= νM−νu− ϑ

M
ui

dv
dt

=
ϑ

M
ui−νv

(4.1)

The normalized variables S = s
N , I = i

N , R = r
N , U = u

M and V = v
M , gives us the normalized system

of differential equations which will be analyzed throughout this chapter. The system is given by,

dS
dt

= µ (1−S)− αM
N

SV −β IS

dI
dt

=−(γ +µ) I +
αM
N

SV +β IS

dR
dt

= γI−µR

dU
dt

= ν(1−U)− ϑN
M

UI

dV
dt

=−νV +
ϑN
M

UI

(4.2)



4.1 Model Formulation and Analysis 38

Structurally model 4.2 is same as the model 3.6. The coefficients are only different. So the majority

of the analysis results of 4.2 are the same as that of 3.6. To avoid confusion for the reader the

transmission coefficients α , β and ϑ from model 3.6 will be further referred to as α0, β0 and ϑ0.

The feasible region is the same for both models, which is given in Theorem 4.1.

Theorem 4.1 The region Γ is a positively invariant set for system 4.2 where the trajectory of

an IVP involving system 4.2 and an initial condition from a region satisfying the following

conditions will remain in this region for all points in time.

Γ = {X = (S, I,R,U,V );0≤ S, I,R,U,V ≤ 1,S+ I +R = 1,U +V = 1}

Proof for this is not given as it is very similar to the proof of the same theorem for model 3.6. Even

though we need to get the values of all compartments we need not use all the equations in model

3.6 to find out the values. As we have the properties S+ I +R = 1 and U +V = 1 we need to find

the values of S, I and V to get the solution for model 3.6. Also, we may notice that if we add up the

first and second equations in 3.6 we get the third equation. Similarly, equations 4 and 5 are simply

negations of each other. So we may disregard the two redundant equations in the further study. The

sufficient and necessary equations form the new system

dS
dt

= µ (1−S)− αM
N

SV −β IS

dI
dt

=−(γ +µ) I +
αM
N

SV +β IS

dV
dt

=−νV +
ϑN
M

(1−V )I

(4.3)

4.1.2 Equilibrium points

Model 4.2 also has the two fates asymptotically, either the disease dying out or it prevailing.

The disease-free equilibrium(DFE) is (1,0,0,1,0) in this case as well. We are looking for that

equilibrium for which (S, I,R,U,V )(t)→ (S∗, I∗,R∗,U∗,V ∗) such that I∗ > 0.

Theorem 4.2 The endemic equilibrium for model 4.2 is

(S∗, I∗,R∗,U∗,V ∗) = (1− (γ +µ)

µ
I∗, I∗,

γ

µ
I∗,

νM
Mν +ϑ I∗N

,
ϑ I∗N

Mν +ϑ I∗N
)

where I∗ is the solution of the quadratic polynomial in the unknown x given by ax2 +bx+ c = 0

a =β
ϑN(γ +µ)

µM

b =− (
βϑN

M
− βν(γ +µ)

µ
− αϑ(γ +µ)

µ
− (γ +µ)

ϑN
M

)

c =(γ +µ)ν−αϑ −βν .
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The endemic equilibrium exists in the int(Γ) and is unique provided

c = ν(γ +µ−β )−αϑ < 0

Even though the threshold property for the uniqueness of endemic equilibrium is the same as that

of model 3.6, the endemic equilibrium is different here.

4.1.3 The linearized system and Jacobian

Let X(t) = (S(t), I(t),R(t),U(t),V (t))T be the 5-dimensional variable whose change with respect

to time is represented by the system of equations 4.2, which can be simply written as

X ′ = F(X(t)) =



µ (1−S)− αM
N SV −β IS

−(γ +µ) I + αM
N SV +β IS

γI−µR

ν(1−U)− ϑN
M UI

−νV + ϑN
M UI


(4.4)

where X ′ denotes d
dt X . The jacobian of the flux part is given by

J =
∂F
∂X

=



−µ− αM
N V −β I −βS 0 0 −α

M
N S

αM
N V +β I −(γ +µ)+βS 0 0 α

M
N S

0 γ −µ 0 0

0 −ϑ
N
MU 0 −ν 0

0 ϑ
N
MU 0 0 −ν


(4.5)

The ratio of the size of the mosquito population to that of the host population, c = M/N is having

an impact on the Jacobian here. For c and 1/c appearing in the Jacobian at the same time, we

should focus on the condition number of the Jacobian.

4.1.4 Basic reproduction number

In this case, also we analyze the two methods available in the literature to deduce the two re-

production numbers. We see that in this case also the two reproduction numbers can be used

interchangeably from a mathematical point of view. However the biological definition of a repro-

duction number is satisfied for the one deduced through the Jacobian method.

Jacobian matrix approach

To analyse the behaviour of the dynamics locally near the disease-free equilibrium(DFE) we focus

on the linearized system at this point, which is given by the variational equation along the solution

of 4.4 with initial state X0 being the DFE. This autonomous linear system[31] is given by

W ′ = DFX0W
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where DFX0 denotes the Jacobian matrix of F evaluated at X0 and W = X −X0. The Jacobian

evaluated at the disease free equilibrium is given by,

J =
∂F
∂X
|(1,0,0,1,0) =



−µ −β 0 0 −α
M
N

0 −(γ +µ)+β 0 0 α
M
N

0 γ −µ 0 0

0 −ϑ
N
M 0 −ν 0

0 ϑ
N
M 0 0 −ν


(4.6)

The characteristic polynomial given by |J−λ I|= 0 is expressed as

[−µ−λ ][−µ−λ ][−ν−λ ][λ 2 +λ (ν + γ +µ−β )+ν(γ +µ−β )−αϑ ] = 0

Even though the Jacobian at DFE is different from that of model 3.6, structurally the characteristic

polynomials are the same for both models. So it can be deduced that the reproduction number

obtained from the Jacobian is also structurally the same here which is given by

RJ
0 =

β

γ +µ
+

αϑ

ν(γ +µ)
(4.7)

Theorem 4.3 RJ
0 > 1 ⇐⇒ ν(γ + µ −β )−αϑ < 0. The endemic equilibrium exists and is

unique provided RJ
0 > 1

Proof. Since we have that ν(γ +µ−β )−αϑ < 0 is the threshold condition to be satisfied by the

parameters to ensure the existence and uniqueness of model 4.2 and this is the same condition for

the existence and uniqueness of the endemic equilibrium for the model 3.6. Also, the reproduction

number RJ
0 is structurally the same. So we can use the proof of 3.10 here as well to prove that when

RJ
0 > 1, the endemic equilibrium exists and is unique. �

Next-generation-matrix approach

For finding the reproduction number using the next generation matrix approach given in [20, 21],

we choose the disease compartments vector x = [I,V ]T and the non-disease compartment vector

y = [S,R,U ]T . The disease incidence part of the flux F and the vital transition part of the flux

function V of the equations involving x are as given below

F =

(
α

M
N V S+β IS

ϑN
M UI

)
and V=

(
(γ +µ)I

νV

)

In this case the next generation matrix is given by K = F̂V̂−1 and the basic reproduction number(RNGM
0 )

is the spectral radius of this matrix, where

F̂ =
∂F

∂x
|DFE =

(
β α

M
N

ϑ
N
M 0

)
and V̂ =

∂V

∂x
|DFE =

(
γ +µ 0

0 ν

)
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We deduce that

RNGM
0 = ρ(K) =

β

2(γ +µ)
+

[(
β

2(γ +µ)

)2

+
αϑ

ν(γ +µ)

] 1
2

(4.8)

which is also structurally the same as that of the RNGM
0 of model 3.6. It directly follows RNGM

0 and

RJ
0 for the newly formulated model is also related by

RJ
0 = RNGM

0
2
+2a(1−RNGM

0 ) (4.9)

where 2a = β

γ+µ
. We also have that the threshold condition is simultaneously holding for RNGM

0

and RJ
0, for a given set of parameters.

Theorem 4.4 For RNGM
0 and RJ

0 we have

(a) RNGM
0 ≤ 1 ⇐⇒ RJ

0 ≤ 1

(b) RNGM
0 > 1 ⇐⇒ RJ

0 > 1

For proof see theorem 3.13

4.1.5 Global Stability of Equilibria

As we have seen previously the reproduction numbers for both models 4.2 and 3.6 are the same,

we will now see how they are connected in the case of global stability of the two equilibria.

Theorem 4.5 The SIRUV model 3.6 holds the sharp threshold property.

Proof. The reproduction number R0 = RNGM
0 is structurally the same as that of model 3.6. So the

derivation of the Lyapunov functions is almost the same as in the proof of Theorem 3.16. The

Lyapunov function for the disease-free equilibrium is obtained using the matrix theoretic method

given in [47].

The Lyapunov funcion is given by Q = wTV̂−1x.

=
R0I
α

+
V
ν

where

w =


R0(γ+µ)

α

0

1


is the left eigenvector of V̂−1F̂ . (where F̂ and V̂ are coming from the derivation of RNGM

0 ). We

see that structurally, the Lyapunov function for disease-free equilibrium is also the same as in

model 3.6. From theorem 3.15 we have that, Q′ = ωTV̂−1x′ ≤ 0 when R0 ≤ 1. Again by Lasalle

Invariance principle, we see that the disease-free equilibrium is GAS when R0 ≤ 1.
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Now using the graph-theoretic method suggested in [47] we have deduced the Lyapunov function

for the endemic equilibrium for model 3.6. Using the same method we can deduce that, D1, D2,

and D3 defined as

D1 = S−S∗−S∗ln
S
S∗

+ I− I∗− I∗ln
I
I∗

D2 =
1
2
(U−U∗)2

D3 =V −V ∗−V ∗ln
V
V ∗

we have that

D = c1D1 + c2D2 + c3D3

is the Lyapunov function for the endemic equilibrium, where (S∗, I∗,R∗,U∗,V ∗) denotes the en-

demic equilibria of model 4.2 and for this model we need to choose c1 = ϑNI∗
M , c2 = αM

N
S∗V ∗
U∗

and c3 =
αM
N S∗V ∗. Again by the Lasalle Invariance Principle, we can conclude that the endemic

equilibrium is not only existing and is unique when R0 > 1, but is also globally asymptotically

stable in the int(Γ). �

4.2 Numerical Results
We have seen that the SIRUV model given by 3.6 and 4.2 shows structural similarities in terms of

the reproduction number and further stability analysis. However, we have already stated that the

endemic equilibrium is not the same. This difference in the models leads to the fact that for both the

models to reach the same endemic equilibrium we should start the different initial conditions. But

how does this make sense when it comes to real-time application? Before answering this question,

we give a numerical example to show that the endemic equilibria for both models are distinct.

4.2.1 Distinct endemic equilibrium

We have only stated that the endemic equilibrium is different for the two models. An explicit

expression of the endemic equilibrium for both models was not given. To exhibit the distinction

of the two endemic equilibria we have done a numerical experiment. For the set of parameters

given in Table 4.1, with the number of hosts as N = 100000, we simulate the values of S∗, I∗ and

V ∗ as a function of the M/N, which is the ratio of the population size of mosquitoes to that of

the hosts. For model 3.6 we use the polynomial given in theorem 3.5 and for model 4.2 we used

the expressions in theorem 4.2 to obtain both the equilibrium. It is seen that the expression of

endemic equilibrium is different for both models. For the choice of M/N values ranging from 1 to

100, we have plotted the susceptible host, infected host and infected vector proportions in Figure

4.1. The relation between M/N and endemic equilibrium for model 4.2 is shown in a log-log plot.

Here the ratio M/N is varied from 10−10 to 1010 and the value of V ∗ is plotted in a log-log plot for

each choice of M/N. For the case, when the population size of vectors M is more than the host

population size(N), the endemic proportion of infected vectors of model 4.2 decreases from the
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value of V ∗ of model 3.6 as M/N increases. For M < N, the endemic proportion of infected vectors

V ∗ of model 4.2 increases from the value of V ∗ of model 3.6 until it reaches the value of V ∗ = 1.

We observe that, for the model 4.2, when the value of M/N is too small, we get V ∗ = 1. This is

reasonable that if the population size of mosquitoes is too small compared to the population size of

hosts then at endemic equilibrium all mosquitoes end up in the infected compartment.

Parameter value time unit

µ 1/(72∗365) [day]

ν 1/10 [day]

β 1/7 [day]

α 1/7 [day]

ϑ 5ν [day]

γ 1/14 [day]

(a) All the parameters except β are taken

from [35] which are defined per year. We

have converted these parameters to values

per day. Also for the host-host transmission

rate(β ) we chose β = 1/7.

Parameter value time unit

µ 1/(72∗365) [day]

ν 1/10 [day]

α 0.008 [day]

β 0.01 [day]

ϑ 0.4 [day]

γ 0.0008 [day]

(b) For the given set of parameters we have

plotted a log-log plot of V ∗ as a function of

M/N.

Table 4.1 – The set of parameters in (a) is used for plotting S∗, I∗ and V ∗ as a function of M/N in
Figure 4.1. For the set of parameters in (a) and (b), a log-log plot in Figure 4.2 compares the endemic
infected vector proportion V ∗ as a function of M/N.
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(a) Endemic proportion of suscepti-

ble hosts S∗
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(b) Endemic proportion of infected

hosts I∗
(c) Endemic proportion of infected

vectors V ∗

Figure 4.1 – For the set of parameters in Table 4.1 we have calculated the endemic proportions S∗, I∗

and V ∗ of model 3.7 (referred to as model 1) and model 4.3 (referred to as model 2) as a function of the
ratio of the population size of mosquitoes to that of hosts(M/N). We see that the endemic equilibrium
for model 2 is different from that of model 1 for the endemic proportion of infected vectors alone. For
susceptible and infected host proportion at endemic equilibrium, there is no impact of the fraction M/N

on model 4.3
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(a) Endemic proportion of infected vectors as a func-

tion of M/N, for the set of parameters in Table 4.1
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tion of M/N, for the set of parameters in Table 4.1
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Figure 4.2 – For the set of parameters in Table 4.1 we have calculated the endemic proportions V ∗ of
model 3.7 (referred to as model 1) and model 4.3 (referred to as model 2) as a function of the ratio of
the population size of mosquitoes to that of hosts(M/N) in a log-log plot. The values of M/N is ranging
from 10−10 to 1010. For M > N, the value of V ∗ of model 4.3 decreases as M/N increases. For N > M,
the value of V ∗ increases as M/N decreases and for N >> M, the value of V ∗ is 1.

M/N 10−10 10−9 10−8 10−7 10−6 10−5 10−4

V 1 1 1 1 0.99999 0.99994 0.99944

M/N 10−3 10−2 10−1 100 101 102 103

V 0.9944 0.94667 0.63967 0.15076 0.017443 0.0017721 0.00017749

M/N 104 105 106 107 108 109 1010

V 1.7752e-05 1.7753e-06 1.7753e-07 1.7753e-08 1.7753e-09 1.7753e-10 1.7753e-11

Table 4.3 – For the set of parameters in Table 4.1 (b) for model 3.6 the endemic proportion of infected
vectors is given by V ∗2 = 0.15076. For the same set of parameters, the values of V ∗ of model 4.2
depending on the choice of M/N are given here.

The values of V ∗ of model 4.2 for different choices of M/N for the set of parameters in Table 4.1

(a) is given in Table 4.2, and the values of V ∗ of model 4.2 for the set of parameters in Table 4.1(b)

is given in Table 4.3. The value of V ∗ for model 3.6 for the set of parameters given in Table 4.1 (a)

are given by V ∗1 = 0.0024338 and for Table 4.1 (b) are given by V ∗2 = 0.15076. From this study, we

conclude that the endemic equilibrium is structurally not the same for both model 4.2 and model

3.6. for the same set of parameters, the value of endemic equilibrium changes for the value of V ∗

and the value of V ∗ in model 4.2, decreasing exponentially when M/N >> 1.

4.2.2 Dependence of disease dynamics on the initial condition

For the set of parameters as in Table 4.1, except for the host-host transmission rate β , we have done

the numerical study for analyzing the dependence of the profile of infected hosts on the initial num-
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Figure 4.3 – For the host-host transmission rate β = 0.1/7, the figures show the disease propagation in
infected hosts for various choices of M/N, which is the ratio of population sizes of vector to host. For
each choice of M/N, the temporal dynamics of the proportion of infected hosts is plotted as the initial
proportion of infected vectors(Vinit ) is varied by defining Vinit = w∗ Iinit .
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M/N 10−10 10−9 10−8 10−7 10−6 10−5 10−4

V 1 1 1 0.99996 0.99959 0.99592 0.96063

M/N 10−3 10−2 10−1 100 101 102 103

V 0.70928 0.19613 0.023817 0.0024338 0.00024392 2.4397e-05 2.4398e-06

M/N 104 105 106 107 108 109 1010

V 2.4398e-07 2.4398e-08 2.4398e-09 2.4398e-10 2.4398e-11 2.4398e-12 2.4398e-13

Table 4.2 – For the set of parameters in Table 4.1 (a) for model 3.6, the endemic proportion of infected
vectors is given by V ∗1 = 0.0024338. For the same set of parameters, the values of V ∗ of model 4.2
depending on the choice of M/N are given here.

ber of infected vectors. We assume that for a given number of initially infected hosts, Iinit , the initial

condition is (Sinit , Iinit ,Vinit) = (1− Iinit , Iinit ,w ∗ Iinit), range(w) is W = {10−3,10−1,101,103,105}.

The profile of infected hosts proportion is plotted for different values of M/N in the range of W ,

when β = 0.1/7 and β = 2/7, for various choices of initial conditions obtained by varying the

value of w. The results for β = 0.1/7 are shown in Figure 4.3 and that for β = 2/7 is given in

Figure 4.4.

For model 3.6, the disease profile gets significantly faster for Vinit > 103Iinit for all choices of M/N

and for all choices of β . For model 4.2(referred to as Model 2 in figures) when M/N = 10−3 and

10−1, the change in initial conditions does not show any significant change in the profile of the

proportion of infected hosts. For M/N = 101 and 103 as the number of initially infected vectors

increases the infection process in hosts gets faster. Moreover,

• For M/N = 101, the disease process is changing for the choice of the proportion of initially

infected vectors, Vinit is greater than 10 times the proportion of initially infected hosts.

• For M/N = 103, the change in the disease dynamics is visible for the choice of initially

infected vector proportion greater than 0.1 times the proportion of infected hosts.

Model 4.2 shows a trend that for both cases of host-host transmission rates, the disease propagation

within hosts is impacted by the ratio of the population size of vectors to that of hosts(M/N) and

as this ratio increases, the proportion of initially infected vectors required to increase the speed

of disease progression is getting smaller. In model 3.6, irrespective of the increase in the ratio of

M/N, the initial proportion of infected vectors impacts the disease dynamics only when it is 1000

times that of the proportion of initially infected hosts. By the definition of α and ϑ in model 3.6, in

application to real-life scenarios, the effect of M/N is expected to appear through these parameters.

4.3 Data fitting and parameter estimation
In this section, we work on the data from the Zika Virus outbreak which began in Brazil and

prevailed throughout the nearby countries during 2015 and 2016. We use weekly data of confirmed

infected cases of the year 2016 for different provinces or states of Brazil. Using this data set we have
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Figure 4.4 – For the host-host transmission rate β = 2/7, the figures show the disease propagation in
infected hosts for various choices of M/N, which is the ratio of population sizes of vector to host. For
each choice of M/N, the temporal dynamics of the proportion of infected hosts is plotted as the initial
proportion of infected vectors(Vinit ) is varied by defining Vinit = w∗ Iinit .

done a least squares fit for models 3.6 and 4.2. For data fitting, we keep certain parameters fixed.

These are the birth/death rate µ , which is taken as the reciprocal of the average life expectancy of

Brazil for the year 2016. The average life expectancy of Brazil for the year 2016 was obtained

from the World Bank data[51] and is fixed as, 1/µ = 75 years. The population size of Brazil and

its federative units for the year 2016 was not obtained. So we used the data for the year 2015,

obtained from [33]. The estimated parameters are β , α , ϑ and γ . The parameter estimation was

done by using the inbuilt routine ’fmincon’ from the optimization toolbox of MATLAB. We solve a

constrained minimization problem which involves a quadratic cost functional given by

J(u) =
n

∑
i=1

(I(ti)− Ii)
2 (4.10)

where u = [β ,γ,α,θ ]. The fitted parameters are found by solving the minimization problem given

by min
u

J(u),u ≥ 0. To understand the dynamics and data fitting we start with the classical SIR

model and analyse if the estimated parameters are in a range of the desirable values. In the classical

SIR model, we fix the birth rate(death rate) µ and the population size(N), and the infection rate β



4.3 Data fitting and parameter estimation 48

and recovery rate γ are estimated using data-fitting. The optimal parameter vector u = [β ,γ,α,θ ]

that minimizes the cost functional J is sought. The raw data for the Zika outbreak in Brazil was

used initially and we were not able to obtain a good fit for the chosen scenario. After many attempts

to find a proper fit, the data was scaled up and using the scaled data we tried to fit for the SIR model.

The results are shown in Figure 4.5. It can be seen that the attempt to find the best fit to the raw data

failed and the parameters for which the given fit is obtained are β = 1.9944 and γ = 2.0100. The

data was scaled by a factor of τ = 30 and using the scaled data the fitted parameters are β = 3.4204

and γ = 3.2317. The scaling factor was obtained by a trial and error method. The scale was fixed

for that value for which we get a recovery rate in the range [1,3.5]. The recovery rate is defined as

the reciprocal of the number of days taken for recovery in classical compartmental models. In this

case, for Zika disease, the number of days for recovery is 2 to 7 days according to WHO[54]. The

recovery rate is defined per week and thereby the given range was chosen. The infection rate β and

recovery rate γ fitted for the SIR model, for different choices of the scale for the raw data, is given

in Table 4.4.

τ 10 20 30 40

β 27.4720 4.4774 3.5401 2.9961

γ 27.4960 4.2705 3.3420 2.8043

Table 4.4 – For τ < 30, we got the fitted γ value out of the desired range.
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(b) Scaled-data fit

Figure 4.5 – The fitted parameters for the raw data did not give a proper fit. The maximum proportion
of infected people in the real data is around 1.1∗10−4 . In the second figure we have used the scaled
data to find the fitting parameters for the model and in this case, we could obtain a proper fit.

By choosing the same scaling for the data, we have done the parameter fitting for models 3.7 and

4.3. In this case, we assumed that the birth/death rate of hosts and vectors are fixed as 1
µ
= 75

years and 1
ν
= 10 days. The population size of mosquitoes is fixed as M = 100∗N. The parameters

estimated using data fitting are the recovery rate γ , human-human infection rate β , vector-human
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infection rate α and human-vector infection rate ϑ . The initial values of the estimated parameters

are as follows. β = 2, γ = 0, α = 0 and θ = 0.The results are given in Figure 4.6. The estimated

parameters for the two models are given in Table 4.5. Without the box-constraints, the optimal

parameters were either out of the desired range or gave a bad fit.

Parameter γ β α ϑ

Model 1[3.7] 3.3466 3.4825 0.2380 0.2205

Model 2[4.3] 3.3463 3.4813 0.2302 0.2300

Table 4.5 – When the range of gamma is given as [1,3.5] and that of other parameters is kept between
[0,20], the estimated values of all parameters for both models are given.
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(a) Data fit of model 1
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(b) Data fit of Model 2

Figure 4.6 – The data fit for both models gave good fit for the scaled data when the scaling factor
τ = 30 provided the box constraints are applied for the parameters to be estimated. The range of γ was
given as [1,3.5]. For all other parameters, it was given as [0,20]



5 Multipatch model

In Chapters 3 and 4, we have discussed models that are helpful in studying the temporal dynamics

of the proportion of individuals in various stages of a disease. In this chapter, we propose a model

that incorporates spatial heterogeneity into the model developed in Chapter 4. Hosts(humans) can

be moving from one place to another thereby mixing among different populations and transmitting

diseases. The spatial movement of hosts can be a long-term movement, like migration and

short-term movement, like daily or weekly commuting between cities. In epidemiological terms,

these short-term movements are called Lagrangian-type movements and the long-term movements

are referred to as Eulerian[15]. Multi-patch models are one method used for studying disease

transmission by involving temporal and spatial dynamics. We have chosen a multi-patch modelling

method in this chapter majorly to incorporate the effect of short-term movements or commuting

behaviour of hosts, in the disease dynamics. To mathematically model this scenario, we divide the

space under consideration into different patches and model them to form a network. Each patch

has a population that originally belongs to it and corresponding to each patch we have a respective

set of parameters. Multi-patch modelling for various important epidemic models is proposed and

studied in the literature[5, 10, 12, 15, 19, 28, 30].

5.1 Model Formulation
Each patch i is assumed to have a homogeneous intrinsic population of hosts of size Ni and a

homogeneous vector population of size Mi. In patch i, the vector and host population consists of

the different compartments namely, the number of susceptible(Si), infected(Ii) and recovered(Ri)

hosts and the number of susceptible(Ui) and infected(Vi) vectors. We assume that the host popu-

lation are moving to the other patches and people in each compartment are getting involved with

the vectors and hosts there. The vectors are assumed to remain in the respective patches without

directly moving to the other patches. The heterogeneous movement of hosts is happening at a

respective rate among each pair of patches. These short-term movements are incorporated using a

residence time budgeting matrix P = (pi j)nxn[9–11, 39], where pi j denotes the time fraction that an

average person in patch i has spent in patch j in unit time. For example on average if a person in

patch i spent 8 hours in patch j, then pi j =
8
24 , provided that unit time is one day. By the definition

of this matrix, we also have that, for each patch i and j, 0 ≤ pi j ≤ 1, and the sum of all column

entries of the ith row of P, ∑
n
j=1 pi j = 1. Following some insights from [10] and [30] we have

developed a multi-patch model as an extension of the model given by system 4.2 in Chapter 4. We

refer to this as the multi-patch SIRUV −ZIKV model. In [30] a term called contact rate is clearly

defined, which is the average number of adequate contacts per day of an infected person from patch



5.1 Model Formulation 51

j with any individuals in patch i by which we have decided to set the parameters as a property of

the respective patch. The parameters are defined for each patch as follows,

α j = number of adequate contacts that are happening per infected mosquito per unit of time with

the people present in patch j,

β j= number of adequate contacts that are happening per infected host per unit of time with the

people present in patch j,

ϑ j = number of adequate contacts that are happening per infected human with mosquitoes in patch

j in unit time,

γ j = number of recoveries that are happening per unit time in patch j,

µ j = birth rate/death rate of the intrinsic host population of patch j and

ν j = birth rate/death rate of the intrinsic vector population of patch j.

Now the incidences in patch j can be understood in the following manner. Let us focus on patch j

and see how many susceptibles from patch i get infected in patch j. If N j inhabitants are residing

in patch j, they commute to other patches in unit time. So the effective population in patch j is

given by N j
e f f = ∑

n
k=1 pk jNk. By the definition of α j, the number of adequate contacts the infected

mosquitoes in patch j has with the people in patch j is given by α jV j. The effective population

of susceptibles in patch j is ∑
n
k=1 pk jSk among which pi jSi are coming from patch i. Finally, the

number of susceptibles from patch i who get infected in patch j due to mosquitoes is given by

α jV j
pi jSi

∑
n
k=1 pk jNk

.

Now we focus on infections between humans. The number of adequate contacts the infected people

present in patch j has with other humans in unit time is given by β jI
j

e f f , where I j
e f f is the effective

number of infected people who came to patch j in unit time which is given by I j
e f f = ∑

n
k=1 pk jIk.

Out of these β j ∑
n
k=1 pk jIk host-host interactions in patch j, the number of infections happened to

the susceptible people of patch i is

β j

n

∑
k=1

pk jIk
pi jSi

∑
n
k=1 pk jNk

.

Now we normalize each compartmental value same as in Chapters 3 and 4. For example, we define

Si =
Si
Ni

or as in the vector population we have Ui =
Ui
Mi

, where Mi is the number of vectors present

in patch i.

Remark 5.1 For Ui the normalisation yields,

dUi

dt
= νi(Mi−Ui)−ϑi

Ui

Mi

n

∑
k=1

pkiNkIk

⇔ MidUi

dt
= νi(Mi−MiUi)−ϑiUi

n

∑
k=1

pkiNkIk

⇔ dUi

dt
= νi(1−Ui)−ϑi

Ui

Mi

n

∑
k=1

pkiNkIk.
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The following system of ODEs describes disease spread in each patch i

dSi

dt
= µi(1−Si)−

n

∑
j=1

α jM jVj
pi jSi

∑
n
k=1 pk jNk

−
n

∑
j=1

β j

n

∑
k=1

pk jNkIk
pi jSi

∑
n
k=1 pk jNk

dIi

dt
=−(γi +µi)Ii +

n

∑
j=1

α jM jVj
pi jSi

∑
n
k=1 pk jNk

+
n

∑
j=1

β j

n

∑
k=1

pk jNkIk
pi jSi

∑
n
k=1 pk jNk

dRi

dt
= γiIi−µiRi

dUi

dt
= νi(1−Ui)−ϑi

Ui

Mi

n

∑
k=1

pkiNkIk

dVi

dt
=−νiVi +ϑi

Ui

Mi

n

∑
k=1

pkiNkIk.

(5.1)

Remark 5.2 Like in the single-patch model 4.2, we have Si + Ii +Ri = 1 and Ui +Vi = 1 for

each compartmental value in patch i. We can neglect the two sets of redundant equations on Ri

and Ui on each patch i and solve for Si, Ii and Vi using the set of equations as given below and

solve for Ri and Ui using the equations Ri = 1−Si− Ii and Ui = 1−Vi.

dSi

dt
= µi(1−Si)−

n

∑
j=1

α jM jVj
pi jSi

∑
n
k=1 pk jNk

−
n

∑
j=1

β j

n

∑
k=1

pk jNkIk
pi jSi

∑
n
k=1 pk jNk

dIi

dt
=−(γi +µi)Ii +

n

∑
j=1

α jM jVj
pi jSi

∑
n
k=1 pk jNk

+
n

∑
j=1

β j

n

∑
k=1

pk jNkIk
pi jSi

∑
n
k=1 pk jNk

dVi

dt
=−νiVi +ϑi

Ui

Mi

n

∑
k=1

pkiNkIk.

(5.2)

The feasibility region is also analogous to the model 4.2.

Theorem 5.3 The region Γ is a positively invariant set for system 5.1 where the trajectory of

an IVP involving system 5.1 and an initial condition from a region satisfying the following

conditions will remain in this region for all points in time.

Γ = {X = (S,I,R,U,V);0≤ Si, Ii,Ri,Ui,Vi ≤ 1,Si + Ii +Ri = 1,Ui +Vi = 1}

where the ith component of S is given by Si and correspondingly for the other terms as well.

5.2 Equilibrium points of the multi-patch model
The multi-patch SIRUV − ZIKV model also has a disease-free equilibrium which is given by

(S0,I0,R0,U0,V0), where S0 = (S1,S2,S3...,Sn)0 = (1,1,1, ...,1) = 1n and I0 = (I1, I2, I3..., In)0 =

(0,0,0, ...,0) = 0n. Similarly, R0 = V0 = 0n and U0 = 1n. The endemic equilibrium is deduced for

the system of equations of patch i. Let (S∗i , I
∗
i ,R

∗
i ,U

∗
i ,V

∗
i ) be such that it satisfies the following

µi(1−S∗i )−
n

∑
j=1

α jM jV ∗j
pi jS∗i

∑
n
k=1 pk jNk

−
n

∑
j=1

β j

n

∑
k=1

pk jNkI∗k
pi jS∗i

∑
n
k=1 pk jNk

= 0 (5.3)
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−(γi +µi)I∗i +
n

∑
j=1

α jM jV ∗j
pi jS∗i

∑
n
k=1 pk jNk

+
n

∑
j=1

β j

n

∑
k=1

pk jNkI∗k
pi jS∗i

∑
n
k=1 pk jNk

= 0 (5.4)

γiI∗i −µiR∗i =0 (5.5)

νi(1−U∗i )−ϑi
U∗i
Mi

n

∑
k=1

pkiNkI∗k =0 (5.6)

−νiV ∗i +ϑi
U∗i
Mi

n

∑
k=1

pkiNkI∗k =0. (5.7)

We may deduce a simplified set of equations for the compartmental values at endemic equilibrium

from 5.3 to 5.7. Adding equations 5.3 and 5.4 we get

µi(1−S∗i )− (γi +µi)I∗i = 0

which in turn gives us that

S∗i = 1− γi +µi

µi
I∗i (5.8)

We know that U∗i = 1−V ∗i . Using this in 5.7 we get

ϑi
1−V ∗i

Mi

n

∑
k=1

pkiNkI∗k −νiV ∗i = 0 (5.9)

which implies that
n

∑
k=1

pkiNkI∗k =
νiMiV ∗i

ϑi(1−V ∗i )
(5.10)

Using equation 5.8 and 5.10 in 5.4 gives

−(γi +µi)I∗i +
n

∑
j=1

α jM jV ∗j
pi j(1− γi+µi

µi
I∗i )

∑
n
k=1 pk jNk

+
n

∑
j=1

β j
ν jM jV ∗j

ϑ j(1−V ∗j )

pi j(1− γi+µi
µi

I∗i )

∑
n
k=1 pk jNk

= 0

which can be simplified to get

−(γi +µi)I∗i +(1− γi +µi

µi
I∗i )

[
n

∑
j=1

(
α j +

β jν j

ϑ j(1−V ∗j )

)
M jV ∗j pi j

∑
n
k=1 pk jNk

]
= 0 (5.11)

Using 5.10 we get

−(γi +µi)I∗i +(1− γi +µi

µi
I∗i )

[
n

∑
j=1

α j
M jV ∗j pi j

∑
n
k=1 pk jNk

+
n

∑
j=1

β j
pi j ∑

n
k=1 pk jNkI∗k

∑
n
k=1 pk jNk

]
= 0 (5.12)

To obtain the endemic equilibrium, we have to solve the system of non-linear polynomials formed

by combining the system of equations given by 5.9 and 5.12. We get a system of 2n equations in 2n

variables I∗i and V ∗i . Even though we have simplified the quest of finding the endemic equilibrium

until this point where we are seeking the root of a system of 2n non-linear polynomial equations

in 2n unknowns, the complexity of solving this system analytically hinders us from obtaining an

explicit expression of endemic equilibrium for the multi-patch model. Further, we can solve this

system of equations numerically to find the endemic equilibrium.
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5.3 Reproduction number of the multi-patch Zika model
As discussed in Chapter 3, the reproduction number can be deduced using the next-generation

matrix approach, by finding the spectral radius of the next-generation matrix[21, 47]. For this, we

first divide the compartmental variables from each patch namely Si, Ii,Ri,Ui, and Vi into disease

and non-disease compartments. In this setting, we denote S = (S1,S2 . . .Sn)
T and its counterparts I,

R, U, V for the other compartmental variables. The compartments can be partitioned as disease and

non-disease terms by appending these vector forms. Let x = [I,V]T ∈R2n denote the disease and

y= [S,R,U]T ∈R3n the non-disease compartments respectively. The model can now be represented

as

x′ = F(x,y)−V(x,y), y′ = g(x,y),

where F = (F1,F2, . . . ,F2n) and V= (V1,V2, . . . ,V2n), where Fi represents the rate of appearance

of new infection in the i th disease compartment and Vi represents the rate of change in i th patch

apart from that represents vital dynamics, for example, birth, death, recovery etc. These transition

rates can be expressed explicitly in the multi-patch model and these expressions can be used further

to deduce the next generation matrix. In model 5.1 we denote A1 = (F1,F2, . . . ,Fn)
T , where

A1i =
n

∑
j=1

α jM jVj
pi jSi

∑
n
k=1 pk jNk

+
n

∑
j=1

β j

n

∑
k=1

pk jNkIk
pi jSi

∑
n
k=1 pk jNk

and A2 = (Fn+1,Fn+2, . . . ,F2n)
T where

A2i = ϑi
Ui

Mi

n

∑
k=1

pkiNkIk

On the other hand V= (B1,B2)T where B1i = (γi +µi)Ii and B2i = νiVi. Using the same approach

as in [21], two 2n∗2n matrices are defined as follows,

F̂ =

[
∂Fi

∂x j

]
|DFE

(5.13)

V̂ =

[
∂Vi

∂x j

]
|DFE

(5.14)

In this case we get

F̂ =

 ∂A1
∂ I |DFE

∂A1
∂V |DFE

∂A2
∂ I |DFE

∂A2
∂V |DFE

=

[
J11 J12

J21 J22

]
(5.15)

where the element in row l and column m of the n∗n matrices J11, J12, J21 and J22 are given by,

J11(l,m) =
∂A1l

∂ Im |DFE
=

n

∑
j=1

β jPm jNmPl j

∑
n
k=1 Pk jNk
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J12(l,m) =
∂A1l

∂Vm |DFE
=

αmMmPlm

∑
n
k=1 PkmNk

J21(l,m) =
∂A2l

∂ Im |DFE
=

ϑlPmlNm

Mm

J22(l,m) =
∂A2l

∂Vm |DFE
=

[
ϑm

Mm

n

∑
k=1

PkmNkIk

]
|DFE

= 0

Similarly we get that

V̂−1 =

(
G11 0
0 G22

)
where G11(l, l) = 1

γl+µl
, G22(l, l) = 1

νl
which in turn gives us the next generation matrix

K = F̂V̂−1 =

(
J11G11 J12G22

J21G11 0

)
(5.16)

The spectral radius of matrix K is the reproduction number of model 5.1. A general expression of

the reproduction number for the case of n patches is not deduced here due to the fact that in the

matrix K, except the last one, all other block matrices that constitute K are full matrices. To find an

explicit expression for the spectral radius of this complex matrix is tedious. But numerically, this

can be achieved and approximate values of the reproduction number can be found.

Remark 5.4 It is to be noted that a similar approach can be used to derive a multi-patch model

from the SIRUV model 3 given in Chapter 3. Without going further into the elaborate model

description we would present this model and examine the important aspects of this model.

dSi

dt
= µi(1−Si)−

n

∑
j=1

α jVj pi jSi−
n

∑
j=1

β j

n

∑
k=1

pk jNkIk
pi jSi

∑
n
k=1 pk jNk

dIi

dt
=−(γi +µi)Ii +

n

∑
j=1

α jVj pi jSi +
n

∑
j=1

β j

n

∑
k=1

pk jNkIk
pi jSi

∑
n
k=1 pk jNk

dRi

dt
= γiIi−µiRi

dUi

dt
= νi(1−Ui)−ϑiUi

∑
n
k=1 pkiNkIk

∑
n
k=1 pkiNk

dVi

dt
=−νiVi +ϑiUi

∑
n
k=1 pkiNkIk

∑
n
k=1 pkiNk

.

(5.17)

Here the parameters α j, β j and ϑ j are defined in a slightly different manner. It is to be noted that α j

is the number of adequate contacts that a susceptible person present in patch j has with mosquitoes,

ϑ j is the number of adequate contacts that a susceptible vector has with hosts present in patch j

and β j is the contact rate of an average susceptible person in patch j with people present in patch j.

By mixing the definition of parameters in the two models we can also have further combinations

of the set of equations. For eg: the first three equations of system 5.1 combined with the last two

equations of model 5.2 will give us a new system with the respective definitions for the parameters.
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5.4 Numerical Results
5.4.1 Endemic equilibrium and Reproduction number

In this section, we would like to first exhibit the endemic equilibrium and reproduction number

of a two-patch model which are both obtained numerically. The endemic equilibrium is obtained

by solving the system of equations as per equations 5.9 and 5.12. In an example, we consider

two patches as in the first numerical example of Chapter 3. In the single-patch example, we saw

that the choice of γ = 0.008 gave us the scenario that the disease pertains and when γ = 0.8 is

chosen, the disease dies out. Here, we consider that patch 1 and patch 2 have all other parameters

same as in Table 3.1. But patch 1 is assumed to have a recovery rate γ1 = 0.008 and patch 2

has a recovery rate γ2 = 0.8. Both patches are assumed to have the same initial conditions given

by (Si, Ii,Vi) = [0.2032,0.0142,0.0617]. We assume that the two patches are connected using the

commuting matrix, P =

(
0.1 0.9

0.01 0.99

)
by which it is assumed that people from patch 1 mostly

go to patch 2 and people in patch 2 spend only some time in patch 1. The solution is given as

in Figure 5.1(a). The endemic equilibrium is given by (S∗1, I
∗
1 ,V

∗
1 ) = (0.3673,0.0033,0.0009) and

(S∗2, I
∗
2 ,V

∗
2 ) = (0.3854,3.237∗10−5,0.0084). It can be seen that the solution curve in patch 2 also

goes to an endemic equilibrium unlike in the single patch case where the DFE was asymptotically

stable. The reproduction number was calculated by using the eig function in MATLAB by giving

the matrix as in equation 5.16. At the same time, in an example where patch 1 was also assumed to

have a recovery rate γ1 = 0.8, both patches showed the asymptotic stability of the DFE.

(a) For R0 > 1 Endemic equilibrium EE is asymptoti-

cally stable

(b) For R0 < 1 disease free equilibrium DFE is asymp-

totically stable

Figure 5.1 – Both figures have a final time t = 100000 days. The figures are plotted for the parameters
defined above in Table 3.1. The first case is for the choice of γ1 = 0.008 and γ2 = 0.8. In Figure (a) we
can see that a spiral is formed and as time tends to ∞ the solution curve is approaching the endemic
equilibrium. In the title of the figure, the reproduction number can be seen as greater than 1. At the
same time for the choice of γ1 = 0.8 and γ2 = 0.8, we can see that the solution curve is approaching the
disease-free equilibrium [1,0,0] and the reproduction number is less than 1 for this case.
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5.4.2 Studying the influence of mobility matrix P through parameter fitting

This chapter focuses on the importance of commuting in disease spread models. The temporal

dynamics of the disease are captured in most of the compartmental models. At the same time, we

try to incorporate the spatial dependence of the disease dynamics through the commuting matrix.

We show in an exemplary scenario that the SIRUV model may not be enough in some cases where

hosts exhibit short-term movements. The multi-patch model is developed from an underlying

single-patch model by incorporating a matrix that defines the fraction of time that the average

person of each patch spends in other patches in unit time. How does mobility affect the disease

dynamics? This in turn answers the question of the need for a multi-patch model as well. Is it

not sufficient to have a single patch model? To answer this question we are doing a numerical

experiment. The experimental setup is as follows. We simulate the scenario where we have a

multi-patch model and all patches have identical behaviour in terms of the disease and non-disease

parameters. In terms of the mobility matrix, we incorporate the spatial movement across patches

by using a non-identical residence time budgeting matrix to represent the commuting between

patches. In such a scenario we simulate the multi-patch system, average out the values of all the

compartments and use this as the data to fit for the parameter β of the single patch model 4 which

assumes the collection of patches involved as a single entity. As one can easily assume we have the

result that when P = I the fitted parameter values in the single-patch model coincide with the β

value for each of the patches in the multi-patch scenario. The multi-patch model is numerically

simulated for the set of parameters given in Table 5.1.

µi αi γi νi ϑi Ni Mi

10/(1000*365) 0.08 0.08 1/14 0.1 5000 10000

Table 5.1 – Parameters in each patch

In this section, we show how different P matrices influence the dynamics of the disease spread

and how much the dynamics vary from that of the single patch model. For this, we choose P

matrices of different patterns and study the influence of P on the disease dynamics. The central

point of interest is how much does the disease dynamics perturb from the single patch SIRUV

model with the introduction of P. The experimental setup is as follows. All patches are assumed to

have the same set of parameters and identical initial proportions of susceptible and infected hosts

and infected vectors. By assuming this we establish that all the patches are identical. We choose a

particular P matrix and simulate the multi-patch model for a given set of parameters as in Table 5.1.

Now we take the average of this solution with respect to the number of patches and use this as data

to fit the parameter β in the single-patch model, provided all other parameters of the single-patch

model, except the host-to-host transmission rate β is fixed and is equal to the parameters given as

in Table 5.1. We have used a data fitting algorithm fminsearch in MATLAB to find the closest β

value that suits the model. The study is done for three different choices of P.
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Case 1 : P = In

Taking an average of the SIRUV multi-patch model across the patches, provided P = In is supposed

to result in the single patch model. For the scenario under consideration, we have validated this

by choosing P = In and simulating the model to get solutions for S, I and V . The simulations are

1 2 3 4 5
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-4

10
-3

10
-2

10
-1

10
0

10
1

b
e
ta

multi-patch

single-patch predictions

Figure 5.2 – For the case of residence time budgeting matrix P = In, for the value of βi = 0.001, 0.01,
0.1, 1 and 10 we have simulated the multi-patch model for n = 30 patches. An average of the simulated
values of susceptible and infected hosts and infected vectors were used as data in the single patch
model and is used to fit for the parameter β . Fitted β values turned out to be 0.0009, 0.0099, 0.0999,
0.9988, 9.9413. Logarithmic values are plotted here for each case. The fitted values were close to the βi

values used in the multi-patch model simulation. The x-axis does not signify much but the five different
experimental setup with different β values.

done in a setting of n = 30 patches. The set of parameters in Table 5.1 was used and for identical

initial conditions, the values of Si, Ii, and Vi for each patch are simulated using the multi-patch

model, by which we establish that all patches are identical. We take the average of the solution of

the multi-patch model for all compartments Si, Ii, and Vi across the patches and use this data for

fitting the parameter β in the single-patch model for the set of values of all other parameters kept

the same as in Table 5.1. In this case, we have tested for five different choices of β . For all five

cases, we have found out that the β values fitted for the single-patch model were the same as in the

multi-patch model. Results are plotted in Figure 5.2

Case 2: P being non-identity

In this case, we chose a non-identity matrix for P and examined the impact of this residence time

budgeting matrix on the disease dynamics. The setting is the same as case 1. The only change is

that in the place of P = I we have a non-identity P matrix which is constructed as follows. We start

with the numbering of the patches. The numbered patches are then mapped to the points in the

coordinate system. A patch with number i is mapped to a point in the coordinate system through
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the mapping q which is defined as follows,

q(i) = (di/pe−1, i−1 (mod p))

where the total number of patches is given by n = p2, dxe represents the largest integer close to

the real number x and k (mod p) denotes the remainder when k is divided by p. To understand the

pattern in which the patches are numbered and the mapping to the points in the coordinate system

defined by

q(i) = (di/pe−1, i−1 (mod p)),

a simple example of the case where n = 42 is given in Figure 5.3.
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Figure 5.3 – Mapping between the numbering of patches and the coordinate representation

The P matrix is defined using the Euclidean norm between the coordinate representation of these

patches. The definition of the residence time budgeting matrix goes as follows:

P(i, i) =
1
p2

P(i, j) =
(

1− 1
p2

)
A(i, j)

∑k 6=i A(i,k)
for i 6= j

(5.18)

where

A(i, i) = 0; A(i, j) =
1

‖(q(i)−q( j)‖η (5.19)

The construction of the matrix given by equation 5.18 is also satisfying the property that the row

sum of the matrix P is 1. We have done a similar study on fitting the parameter β for the single-patch

model by using the data from the multi-patch model involving the new P matrix. The results can be

seen in Figure 5.4. As expected the fitted β values are distorted, unlike the first case where P is the

identity matrix. For this choice of P matrix, it should be noted that, for larger values of the choice

of βi, the value of β from the data fitting is close to the desired values. For the same residence

time budgeting matrix, we have examined the dependence of the predicted β on the value η . For a

fixed value of βi, we generated the data for a set of η values ranging from 0 to 5, by simulating the

multi-patch model for different P matrices in connection with the choice of α . For each generated

data, β value was fitted for the single patch model and the difference of the fitted β value from βi
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Figure 5.4 – For the choice of η = 0.1, fitted beta values turned out to be 0.0321, 0.0410, 0.1301,
1.0287, and 9.9751. Logarithmic values are plotted here for each case. The x-axis of the figure shows
the 5 different experimental setups with the 5 distinct choices of β

value is shown in Figure 5.5. Another study using the same P matrix is done, where the number of

patches is varied and the dependence of the predicted host-host transmission rate β for the single

patch model on the value of η is plotted in Figure 5.6. The total number of patches n = p2 is varied

by making a choice of p = 3,5,10,15. For a number of patches being small, the deviation of the

host-host transmission rate of the single-patch model from that of the multi-patch model is large.

As p increases

Case 3: Another non-trivial choice of P

For academic purposes, we have developed a P that increases the value of pi j as the number of

columns increases. For this P matrix, we have easily verified that the sum of each row is 1 and that

each element has a value between 0 and 1. The matrix is defined as follows

P(i, j) = (2∗ j−1)/n2

5.4.3 Numerical simulation for local and non-local spread

We have simulated two scenarios each for the multi-patch model where the number of patches is

50*50. The first case is where we choose a P matrix that exhibits the mobility between the nearest

neighbouring patches alone. For understanding how non-local transport is achieved by the choice

of P we have given another example.

Nearest neighbor coupling

The movement between patches is given in Figure 5.8. The chosen P matrix for incorporating a

movement between the nearest neighbour patches is as follows
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Figure 5.5 – Using the data generated for β = 0.1 and different choices of η ranging from 0 to 5, the
fitted β for the single patch model is distorted from the value 0.1. The dependence of these predicted β

values on η is shown in this figure

P(i, ji) =
1
bi
− 1

n

P(i, i) =
bi

n
P(i, j) = 0 for j 6= i, ji

(5.20)

where bi is the number of nearest neighbours and these neighbours of patch i are represented by ji.

For this case it is to be noticed that the two required conditions are satisfied for the P matrix.

• 0 < P(i, j)< 1 for all 1≤ i, j ≤ n.

• The row sum equals 1. This is shown in theorem 5.5

i

3

3

3

3

5 5

5

5

8

Figure 5.8 – The number of nearest neighbours bi for each patch i in the case of n = 9 is shown in the
second grid. The corners have 3 neighbours, inner patches have 8 neighbours and the other boundary
patches have 5 neighbours each

Theorem 5.5 The P matrix defined by 5.20 satisfies the condition that ∑
n
j=1 P(i, j) = 1
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Proof.

n

∑
j=1

P(i, j) = P(i, i)+ ∑
j= ji

P(i, j)

=
bi

n
+bi(

1
bi
− 1

n
)

= 1

�

For the numerical simulation using nearest neighbour coupling, we take bi = 8 for the internal

patches. The number of neighbours is counted in the same way as in an exemplary case of n = 32

as in Figure 5.8. For a choice of p = 50, we have worked on a setting of 50*50 = 2500 patches and

have done a simulation of the disease spread model 5.1. The disease is spread across other patches

which is incorporated in the model using the residence time budgeting matrix described in 5.20,

which exhibits only a movement from each patch to its nearest neighbours. We assume that initially,

all the patches are at a state where the infected number of people is zero and the whole population

in these patches is susceptible. The only exceptions are the corners of the grid. On these patches the

infected number of people is non-zero. With this as the initial condition, the evolution of disease

across patches connected using the nearest neighbour residence time budgeting matrix P has been

simulated. In this setting, we assume that all the patches have an identical set of parameters and all

four corners have identical initial conditions given as in Table 5.2. The people from corner patches

are moving to other patches and infecting them. The results are plotted in Figure 5.9. From the

solution, we can see that the disease transmission across patches is showing a diffusive behaviour.
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Figure 5.7 – For β = 0.001, 0.01, 0.1, 1, 10, fitted beta values turned out to be 0.0041, 0.0571, 0.5844,
5.8336, 262.0286. Logarithmic values are plotted here for each case. The x-axis signifies the five
different experimental setups with five distinct β values.

µi βi αi γi νi ϑi Ni Mi Sic Iic Vic

1/(71*365) 1/7 1/7 1/14 1/10 5νi 1000 5000 0.7 0.3 0.1

Table 5.2 – Parameters in each patch

0 0.55

Figure 5.9 – The figure depicts the size of the infected compartment Ii(t) for each patch i at time t,
where the colour blue depicts the infected proportion to be zero and yellow represents the scenario when
55 percent of the total population is infected. The simulation is done for a time span of four months
with an assumption that the disease outbreak happened initially in the four outer corner patches. The
nearest neighbour coupling has resulted in the disease spreading in a diffusive manner from the initially
infected corner patches towards the inner ones. The simulation results of the time instances at the end
of every two weeks shown in the figure.
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An example of non-local disease spread

In this section, we are modelling a scenario in which the commuting happens between patches that

are not the nearest neighbours so that the disease is spreading to a patch from another patch that

is not its nearest neighbour. This is achieved by constructing a residence time budget matrix that

exhibits commuting behaviour between patches that are not geographically close. The P matrix

is constructed as follows. We assume three separate geographical entities that are formed by a

collection of nearby patches. In this scenario, we refer to these geographical entities as cities and

name them city1, city2 and city3. An average person is assumed to be moving from patch any to its

nearest neighbours as well and the patches in the cities are connected among each other due to the

non-local commuting of hosts between them. The P matrix should also maintain the sum of each

row as 1.

We refer to the residence time budget matrix given in 5.20 by Ploc and use this in the construction of

the new matrix, which we refer to as Pnonloc. Let i1 be a patch which belongs to city1. In a given unit

of time, the hosts that are intrinsically belonging to patch i1, on average spends k1 percent of the

time in the nearest neighbouring patches. The rest of the (1− k1) percent of the time people spend

in the city2. Similarly, k2 is the fraction of time spent by people of city2 in its nearest neighbours

and (1− k2) percent of the time is spent in city3. Collectively, let ik denote patches in cityk, the

time budgets of an average host in patch ik is given by,

Pnonloc(i1, j) = k1Ploc(i1, j)+
(1− k1)
#city2

for j ∈ city2

Pnonloc(i1, j) = k1Ploc(i1, j) for j /∈ city2

Pnonloc(i2, j) = k2Ploc(i2, j)+
(1− k2)
#city3

for j ∈ city3

Pnonloc(i2, j) = k2Ploc(i2, j) for j /∈ city3

(5.21)

where #cityk shows the number of patches in cityk. For a patch i that does not belong to city 1 and

city 2, the entries of the i-th row of the commuting matrix Pnonloc(i, :) is the same as that of the

nearest neighbour commuting matrix given by, Ploc(i, :) which indicates the situation that people

from patch i are only moving to its nearest neighbours. It is to be noted that, by the construction of

Ploc, we have that each row of Ploc has row-sum 1. Now the sum of a row corresponding to patches

that belong to city 1 in Pnonloc is given by

n

∑
j=1

Pnonloc(i1, j) = k1 ∑
j/∈city2

Ploc(i, j)+ ∑
j∈city2

k1Ploc(i1, j)+
(1− k1)
#city2

= k1∑
j

Ploc(i, j)+ ∑
j∈city2

(1− k1)
#city2

= 1

Similarly, for those patches i2 in city 2 as well we have that ∑
n
j=1 Pnonloc(i2, j) = 1. Collectively,

the new commuting matrix does the following,

• People from all patches follow the nearest neighbour commuting as given in example 5.8.
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• People from any patch in city 1 spend k1 percent of the unit time in the nearest neighbours

and the rest of the time in city 2. Similarly, the hosts in city 2 spend k2 percent of their time

in the nearest neighbours and the rest of the time in city 3.

Using this new P matrix we have simulated the scenario of city 1 being affected initially and see

how does the commuting hosts take the disease to the second region. For this simulation, we

consider the scenario, where the total number of patches is given by n = p2 where p = 50. The

number of patches of cities is 52 each and they are distinct apart so that they both do not share any

patches that are nearest neighbours to each city. In principle, the people of city 1 and city 3 are

not moving to each other. When a disease outbreak happens in the city1 it is spread to its nearest

neighbours as well as to city 2. And later the disease is taken to city3 as the people of patches of

city2 are transmitting the disease to the city3. The simulations are done for the set of identical

parameters for each patch given in Table 5.3. The initial conditions of the city1 are also given in

this table. The simulation results are given in Figure 5.12 for the scenario where k1 = 20% and

k2 = 99%, which means people in city 1 spend 80% of their time in city 2 and people in city 2

spend 1% time in city 3.

µi βi αi γi νi ϑi Ni Mi Si1 Ii1 Vi1

1/(71*365) 0.8/7 0.5/7 1/14 1/10 5νi 5000 10000 0.9 0.1 0.1

Table 5.3 – Parameters in each patch

Figure 5.10 – Figure shows the initial condition where there are only infected hosts in city 1

The average number of infected people in all three cities is given in Figure 5.11. It can be seen

that city 2 is infected in the first week itself and city 3 is infected in the third week. The infection

dynamics in cities 1 and 2 reach its peak in the third week and that of city 3 reaches its peak in the
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end of the eighth week.
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Figure 5.11 – The average proportion of infected hosts in all three cities is plotted for the period of two
months. It can be seen that the disease is transmitted to city 3 roughly close to the fourth week.

0 0.38

Figure 5.12 – The dynamics of the disease spread across patches is given for every week up to two
months. The disease outbreak in city 1 is transmitted to its nearest neighbors as well as to city 2. Slowly
the disease is taken from city 2 to city 3 and each city spread the disease to its nearest neighbours in a
diffusive manner



6 Developing a PDE Model

In this chapter, we show that the multi-patch model with nearest neighbour-like coupling converges

to a system of partial differential equations. The nearest-neighbour coupling defined in the section

5.4.3 is different from the residence time budget matrix that is used in this chapter. Here, we just

assume four patches as the nearest neighbours. Firstly, we rewrite the multi-patch ODE model given

in 5.1 with double indices. This is done to assign each patch to a Cartesian-coordinate-like system.

We are focusing on a two-dimensional space domain and thereby use double indices (i, j) to denote

a patch, where 1≤ i, j ≤ n and they count to a total of n2 in number. We use either a subscript or

superscript i j to distinguish the compartments, parameters etc. patch-wise. The elements of the

residence time budgeting matrix is updated as prs
i j , which gives the rate of commuting from (i, j) to

(r,s).

dSi j

dt
=µi j (1−Si j)−Si j

(
∑

1≤r,s≤n
αrsVrsMrs

prs
i j

∑1≤l,q≤n prs
lqNlq

+

(
∑

1≤r,s≤n
βrs prs

i j ∑
1≤l,q≤n

prs
lqNlqIlq

∑1≤l,q≤n prs
lqNlq

))
dIi j

dt
=Si j

(
∑

1≤r,s≤n
αrsVrsMrs

prs
i j

∑1≤l,q≤n prs
lqNlq

+

(
∑

1≤r,s≤n
βrs prs

i j ∑
1≤l,q≤n

prs
lqNlqIlq

∑1≤l,q≤n prs
lqNlq

))
− (γi j +µi j) Ii j

dRi j

dt
=γi jIi j−µi jRi j

dUi j

dt
=νi j (1−Ui j)−ϑi j

Ui j

Mi j
∑

1≤r,s≤n
pi j

rsNrsIrs

dVi j

dt
=−νi jVi j +ϑi j

Ui j

Mi j
∑

1≤r,s≤n
pi j

rsNrsIrs

Now we focus on the specific case where the movement from each patch is either to the nearest

neighbours to which horizontal or vertical movement is admissible. Diagonally close neighbours

are not considered. The values of prs
i j would look like this,

pi j
i j =

bi j

n

pi j±1
i j =

1
bi j
− 1

n

pi±1 j
i j =

1
bi j
− 1

n

prs
i j =0 for r ∈ I0,s ∈ J0

(6.1)

where bi j is the number of neighbours to which people of patch i j have admissible movement.

Also, I0 = {1,2, . . . t}−{i−1, i, i+1} and J0 = {1,2, . . . t}−{ j−1, j, j+1}. In this setting, for

internal patches bi j = 4 and it varies on the boundary patches (see Figure 6.1) For the chosen P
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Figure 6.1 – The number of nearest neighbours bi j for each patch i j in the case of n = 3 is shown in the
second grid. The corners have 2 neighbours, inner patches have 4 neighbours and the other boundary
patches have 3 neighbours each

matrix for internal nodes, the first equation of the system can be expanded. For simplicity we define

frs =
αrsMrsVrs

Nrs
e f f

and hrs = NrsIrs where Nrs
e f f = ∑1≤l,q≤n prs

lqNlq

dSi j

dt
=µi j (1−Si j)−Si j

(
(
1
4
− 1

n
)( fi j−1 + fi j+1 + fi−1 j + fi+1 j− fi j)+(

1
4
− 1

n
) fi j +

4
n

fi j

)

−Si j

(
(
1
4
− 1

n
)(

βi j−1

Ni j−1
e f f

((
1
4
− 1

n
)(hi j−2 +hi j +hi−1 j−1 +hi+1 j−1−hi j−1)+

4
n

hi j−1 +(
1
4
− 1

n
)hi j−1)

+
βi j+1

Ni j+1
e f f

((
1
4
− 1

n
)(hi j +hi j+2 +hi−1 j+1 +hi+1 j+1−hi j+1)+

4
n

hi j+1 +(
1
4
− 1

n
)hi j+1)

+
βi−1 j

Ni−1 j
e f f

((
1
4
− 1

n
)(hi−1 j−1 +hi−1 j+1 +hi+2 j +hi j−hi−1 j)+

4
n

hi−1 j +(
1
4
− 1

n
)hi−1 j)

+
βi+1 j

Ni+1 j
e f f

((
1
4
− 1

n
)(hi+1 j−1 +hi+1 j+1 +hi j +hi+2 j−hi+1 j)+

4
n

hi+1 j +(
1
4
− 1

n
)hi+1 j))

− 4
n

βi j

Ni j
e f f

((
1
4
− 1

n
)(hi j−1 +hi j+1 +hi−1 j +hi+1 j−hi j)+

4
n

hi j +(
1
4
− 1

n
)hi j)

)
(6.2)

Now we rewrite this set of equations by redefining the variables involved to establish a continuous

dependence of these equations on the space domain. This is inspired by a similar work where

a continuous model(PDE) is derived from a discrete SIR model. A probabilistic equation that

connects the current state of the population to a future state is the discrete model used to develop

the continuous model in this paper[14]. The probabilistic function involved is varying with respect

to time t and the number of susceptible n and infected people(m) in the population. The limiting

behaviour of this probabilistic function is studied as the population size tends to infinity and the

time step tends to zero. Asymptotically, for large population size a PDE whose characteristics

are the classical SIR model is obtained. We define the coordinates of space domain as, x = i
n and

y = j
n where n2 is the total number of patches. Each unknown and parameter involved in 6.2 can be

written in the continuous format as follows. Let Ui j(t) be an unknown, function or parameter in the
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discrete setting. We define U(t,x,y) =Ui j(t) So equation 6.2 can be rewritten as follows

dSi j

dt
=

∂S(t,x,y)
∂ t

= µ(t,x,y)(1−S(t,x,y))

−S(t,x,y)

(
(
1
4
− 1

n
)( f (t,x,y−δ )+ f (t,x,y+δ )+ f (t,x−δ ,y)+ f (t,x+δ ,y)

− f (t,x,y))+(
1
4
+

3
n
) f (t,x,y)

)

−S(t,x,y)

(
(
1
4
− 1

n
)

[
β (t,x,y−δ )

Ne f f (t,x,y−δ )
((

1
4
− 1

n
)(h(t,x,y−2δ )+h(t,x,y)

+h(t,x−δ ,y−δ )+h(t,x+δ ,y−δ )−h(t,x,y−δ ))+(
1
4
+

3
n
)h(t,x,y−δ ))

+
β (t,x,y+δ )

Ne f f (t,x,y+δ )
((

1
4
− 1

n
)(h(t,x,y)+h(t,x,y+2δ )+h(t,x−δ ,y+δ )+h(t,x+δ ,y+δ )

−h(t,x,y+δ ))+(
1
4
+

3
n
)h(t,x,y+δ ))

+
β (t,x−δ ,y)

Ne f f (t,x−δ ,y)
((

1
4
− 1

n
)(h(t,x−δ ,y−δ )+h(t,x−δ ,y+δ )+h(t,x+2δ ,y)+h(t,x,y)

−h(t,x−δ ,y))+(
1
4
+

3
n
)h(t,x−δ ,y))

+
β (t,x+δ ,y)

Ne f f (t,x+δ ,y)
((

1
4
− 1

n
)(h(t,x+δ ,y−δ )+h(t,x+δ ,y+δ )+h(t,x,y)+h(t,x+2δ ,y)

−h(t,x+δ ,y))+(
1
4
+

3
n
)h(t,x+δ ,y))

]

− 4
n

β (t,x,y)
Ne f f (t,x,y)

((
1
4
− 1

n
)(h(t,x,y−δ )+h(t,x,y+δ )+h(t,x−δ ,y)+h(t,x+δ ,y)

−h(t,x,y))+(
1
4
+

3
n
)h(t,x,y))

)
(6.3)

where δ = 1
n .

Remark 6.1 — Taylor expansion in higher dimensions. [Königsberger] Let U ⊂ Rn and

f : U → R be a Cp+1− function. Let us consider points a,x ∈ U so that the line segment

connecting them lies in U , so that

f (x) =
p

∑
k=0

1
k!

d(k) f (a)(x−a)k +Rp+1(x;a)

where the Residual with a given point ξ ∈ [a;x] can be represented in the form

Rp+1(x;a) =
1

(p+1)!
d(p+1) f (ξ )(x−a)(p+1)
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where

d(k) f (a)(x)k =
n

∑
i1=1
· · ·

n

∑
ik=1

∂i1 · · ·∂ik f (a)xi1 · · ·xik

In 2D we have

f (t,x0 +δx,y0 +δy) = f (t,x0,y0)+
∂ f
∂x

(x0,y0)δx+
∂ f
∂y

(x0,y0)δy+
1
2

[
∂ 2 f
∂x2 (x0,y0)(δx)2

+2
∂ 2 f

∂x∂y
(x0,y0)δxδy+

∂ 2 f
∂y2 (x0,y0)(δy)2

]
+O(∆x3 +∆y3)

Now we make use of Taylor expansion to get all terms in equation 6.3 as a function of t,x and y.

For example, let us see how Taylor expansion would simplify a set of functions in the following

expression.(
1
4
− 1

n

)[
f (t,x,y−δ )+ f (t,x,y+δ )+ f (t,x−δ ,y)+ f (t,x+δ ,y)− f (t,x,y)

]
+

(
1
4
+

3
n

)
f (t,x,y)

=

(
1
4
− 1

n

)[{
f (t,x,y)−δ

∂ f (t,x,y)
∂y

+
δ 2

2
∂ 2 f (t,x,y)

∂y2

}
+

{
f (t,x,y)+δ

∂ f (t,x,y)
∂y

+
δ 2

2
∂ 2 f (t,x,y)

∂y2

}

+

{
f (t,x,y)−δ

∂ f (t,x,y)
∂x

+
δ 2

2
∂ 2 f (t,x,y)

∂x2

}
+

{
f (t,x,y)+δ

∂ f (t,x,y)
∂x

+
δ 2

2
∂ 2 f (t,x,y)

∂x2

}]

+
4
n

f (t,x,y)

=

(
1
4
− 1

n

)[
δ 2

2
∂ 2 f (t,x,y)

∂y2 +
δ 2

2
∂ 2 f (t,x,y)

∂y2 +
δ 2

2
∂ 2 f (t,x,y)

∂x2 +
δ 2

2
∂ 2 f (t,x,y)

∂x2

]

( f (t,x,y)− 4
n

f (t,x,y))+
4
n

f (t,x,y)

=

(
1
4
− 1

n

)[
δ

2
∆ f (t,x,y)

]
+ f (t,x,y)

= f (t,x,y)+
δ 2

4
∆ f (t,x,y)

(6.4)

As f (t,x,y) = α(t,x,y)M(t,x,y)V (t,x,y)
Ne f f (t,x,y)

, we focus on the function 1
Ne f f (t,x,y)

to see if this can be further

simplified. For this let us focus on the effective population in the discrete setting.

Nrs
e f f = ∑

1≤l,q≤n
prs

lqNlq =

(
1
4
− 1

n

)
(Nr−1s +Nrs−1 +Nr+1s +Nrs+1)+

4
n

Nrs

=

(
1
4
− 1

n

)
(Nr−1s +Nrs−1 +Nr+1s +Nrs+1−4Nrs)+Nrs

In the continuous setting, this expression becomes

Ne f f (t,x,y) =
(

1
4
− 1

n

)
(N(t,x−δ ,y)+N(t,x,y−δ )+N(t,x+δ ,y)+N(t,x−δ ,y)

−4N(t,x,y))+N(t,x,y)
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Expanding each term using the Taylor series and keeping only terms of order up to δ 2 gives

Ne f f (t,x,y) =
(

1
4
− 1

n

)[
δ

2(Nxx(t,x,y)+Nyy(t,x,y))
]
+N(t,x,y)

=N(t,x,y)+
δ 2

4
∆N(t,x,y)

So we have,

1
Ne f f (t,x,y)

=
1

N(t,x,y)

 1

1+δ 2 ∆N(t,x,y)
N(t,x,y)


For n large enough we have, ∣∣∣∣δ 2 ∆N(t,x,y)

N(t,x,y)

∣∣∣∣≤ 1

Using 1
1+x = 1− x+ x2− x3 + . . . and keeping only terms of order up to δ we get

1
Ne f f (t,x,y)

=
1

N(t,x,y)

So for every term involving 1
Ne f f (t,x,y)

, asymptotically as n→ ∞, it behaves like 1
N(t,x,y) . So the

function f (t,x,y) can be defined as

f (t,x,y) =
α(t,x,y)M(t,x,y)V (t,x,y)

N(t,x,y)
.

The same method as in equation 6.4 can be used to simplify the terms involving the function

h at different points in the stencil. At the point (x,y) this will be given by the expression(
δ 2

4

)
[∆h(t,x,y)]+h(t,x,y) Thereby equation 6.3, will be simplified as follows.

∂S(t,x,y)
∂ t

=µ(t,x,y)(1−S(t,x,y))−S(t,x,y)
(

f (t,x,y)+
δ 2

4
∆ f (t,x,y)

)
−S(t,x,y)

(
(
1
4
− 1

n
)

[
β (t,x,y−δ )

Ne f f (t,x,y−δ )
(

(
δ 2

4

)
[∆h(t,x,y−δ )]+h(t,x,y−δ ))

+
β (t,x,y+δ )

Ne f f (t,x,y+δ )
(

(
δ 2

4

)
[∆h(t,x,y+δ )]+h(t,x,y+δ ))

+
β (t,x−δ ,y)

Ne f f (t,x−δ ,y)
(

(
δ 2

4

)
[∆h(t,x−δ ,y)]+h(t,x−δ ,y))

+
β (t,x+δ ,y)

Ne f f (t,x+δ ,y)
(

(
δ 2

4

)
[∆h(t,x+δ ,y)]+h(t,x+δ ,y))

+
4
n

β (t,x,y)
Ne f f (t,x,y)

(

(
1
4
− 1

n

)[
δ

2
∆h(t,x,y)

]
+h(t,x,y))

]
(6.5)

For simplification let us define

k(t,x,y) =
β (t,x,y)

Ne f f (t, ,x,y)
∆h(t,x,y) g(t,x,y) =

β (t,x,y)
Ne f f (t, ,x,y)

h(t,x,y)
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Now 6.5 simplifies to

∂S(t,x,y)
∂ t

=µ(t,x,y)(1−S(t,x,y))−S(t,x,y)
(

f (t,x,y)+
δ 2

4
∆ f (t,x,y)

)
−S(t,x,y)

(
1
4
− 1

n

)
δ

2

((
1
4
− 1

n

)
(k(t,x,y−δ )+ k(t,x,y+δ )+ k(t,x−δ ,y)

+ k(t,x+δ ,y))+
4
n

k(t,x,y)

)

−S(t,x,y)

((
1
4
− 1

n

)
(g(t,x,y−δ )+g(t,x,y+δ )+g(t,x−δ ,y)+g(t,x+δ ,y))

+
4
n

g(t,x,y)

)
(6.6)

Using the same method as in 6.4

∂S(t,x,y)
∂ t

=µ(t,x,y)(1−S(t,x,y))−S(t,x,y)
(

f (t,x,y)+
1
4

∆ f̃ (t,x,y)
)

−S(t,x,y)
(

1
4
− 1

n

)
δ

2

((
1
4
− 1

n

)[
δ

2
∆k(t,x,y)

]
+ k(t,x,y)

)

−S(t,x,y)

((
1
4
− 1

n

)[
δ

2
∆g(t,x,y)

]
+g(t,x,y)

)
=µ(t,x,y)(1−S(t,x,y))−S(t,x,y) f (t,x,y)

−S(t,x,y)
(

δ 2

4
(
δ 2

4
∆k(t,x,y)+ k(t,x,y))

)
−S(t,x,y)

(
g(t,x,y)+

δ 2

4
∆g(t,x,y)

)

(6.7)

Neglecting all terms that have δ or its powers in 6.7 we get,

∂S(t,x,y)
∂ t

=µ(t,x,y)(1−S(t,x,y))−S(t,x,y)( f (t,x,y)+g(t,x,y))) (6.8)

In a similar way, we find out the corresponding partial differential equations for the functions I,R,U

and V respectively. Asymptotically assuming that all higher-order terms in the Taylor expansion

are infinitesimal we deduce the following system of equations for n→ ∞

∂S
∂ t

= µ(1−S)−S( f +g)

∂ I
∂ t

=−(γ +µ)I +S( f +g)

∂R
∂ t

= (γ +µ)I

∂U
∂ t

= ν(1−U)− ϑU
M

h

∂V
∂ t

=−νV +
ϑU
M

h
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where

f (t,x,y)=
α(t,x,y)M(t,x,y)V (t,x,y)

N(t,x,y)
g(t,x,y)=

β (t,x,y)
N(t,x,y)

h(t,x,y), h(t,x,y)=N(t,x,y)I(t,x,y)



7 Conclusion

The main objective of this research work is to formulate models that simulate the spread of diseases

that are transmitted directly among humans as well as through mosquitoes. In Chapter 3, a model

that has human and mosquito populations is presented, which is a combination of the SIRUV

model for normal vector-borne diseases like Dengue and the classical SIR model. Further, this

model was mathematically analyzed. In general compartmental disease models, a threshold value

called basic reproduction number is crucial and there are two methods to find an expression of

this threshold value. A unique property of our model is that the mathematical expressions of the

reproduction numbers that are obtained using these two methods were not identical or did not have

an obvious relationship. However, it is proven that the sharp threshold property for the model

can be equivalently described using these two reproduction numbers. The global stability of the

two equilibrium points of the model is proven by constructing the Lyapunov functions using the

matrix-theoretic and graph-theoretic methods available in the literature. Later numerical simulations

were seen to be in agreement with the mathematical results. In Chapter 4, a model with a different

definition of parameters was formulated, which explicitly incorporated the terms that directly

exhibited the ratio of population sizes of humans and mosquitoes. The mathematical expressions

for the reproduction numbers, Lyapunov function for the disease-free equilibria and characteristic

polynomial of the Jacobian matrix etc were structurally same for the both models whereas the major

difference was with the endemic equilibria, which was shown later in the numerical simulations.

A comparative numerical study showed the difference between both models for simulations done

with the same initial conditions. It is seen that the second model exhibits the variation in the ratio

of population sizes of humans and mosquitoes evidently. In Chapter 5, we extended the second

model given in Chapter 4, to a multi-patch model to incorporate the spatial dependence of the

disease dynamics. In this model, we have used a meta-population modelling approach by dividing

the region under consideration into mutually exclusive spatial units called patches. The host and

mosquito population under consideration is divided into different compartments depending upon

the stage of disease they are in as well as the patches they belong to. Thereby each patch has an

intrinsic population of humans and mosquitoes and the model describes the disease spread within

and among the patches due to the commuting behavior of humans. The short-term or Lagrangian

movement of hosts between these patches is incorporated using the residence-time budgeting

matrix. In this study, we have obtained simplified expressions for finding the endemic equilibrium

and reproduction number(using next generation matrix approach) for an n-patch scenario. In the

numerical simulations, a 2-patch example is given where we can see that the sharp threshold

property is holding for the multi-patch model as well. That is when the reproduction number is less
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than 1, the disease dies out and if it is greater than 1, the disease becomes endemic. But unlike in

the single-patch cases as in Chapters 3 and 4, an explicit mathematical expression for the endemic

equilibrium and reproduction number is not derived. However, a simplified method combining the

mathematical and numerical toolbox of MATLAB can be used to find the endemic equilibrium and

reproduction number for specific cases. This is also shown in the numerical example. Later, using

the multi-patch model, we demonstrated the importance of using the meta-population model instead

of the single-patch model. In the example cases using different residence-time-budgeting matrices,

we have shown the variation in infection rate from the single-patch scenario using the data-fitting

method which used the optimization toolbox of MATLAB. We have also presented two examples

where the multi-patch model shows the diffusive behaviour of disease spread when a local and

non-local residence time budget matrix is respectively used. In Chapter 6, we have derived a system

of partial differential equations from the multi-patch model for a given residence-time budgeting

matrix.
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