Hartree–Fock analogue theory of thermo-optic interaction

  • Thermo-optic interaction significantly differs from the usual particle-particle interactions in physics, as it is retarded in time. A prominent platform for realising this kind of interaction are photon Bose–Einstein condensates, which are created in dye-filled microcavities. The dye solution continually absorbs and re-emits these photons, causing the photon gas to thermalize and to form a Bose–Einstein condensate. Because of a non-ideal quantum efficiency, these cycles heat the dye solution, creating a medium that provides an effective thermo-optic photon–photon interaction. So far, only a mean-field description of this process exists. This paper goes beyond by working out a quantum mechanical description of the effective thermo-optic photon–photon interaction. To this end, the self-consistent modelling of the temperature diffusion builds the backbone of the modelling. Furthermore, the manyfold experimental timescales allow for deriving an approximate Hamiltonian. The resulting quantum theory is applied in the perturbative regime to both a harmonic and a box potential for investigating its prospect for precise measurements of the effective photon–photon interaction strength.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Enrico SteinORCiD, Axel PelsterORCiD
URN:urn:nbn:de:hbz:386-kluedo-81743
DOI:https://doi.org/10.1088/1367-2630/acc34c
ISSN:1367-2630
Titel des übergeordneten Werkes (Englisch):New Journal of Physics
Verlag:IOP
Dokumentart:Wissenschaftlicher Artikel
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):30.04.2024
Jahr der Erstveröffentlichung:2023
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Publikation (Server):30.04.2024
Ausgabe / Heft:25
Seitenzahl:10
Quelle:https://iopscience.iop.org/article/10.1088/1367-2630/acc34c
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Physik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 530 Physik
Sammlungen:Open-Access-Publikationsfonds
Lizenz (Deutsch):Zweitveröffentlichung