Controlled quantized adiabatic transport in a superlattice Wannier-Stark ladder

  • The Born–Fock theorem is one of the most fundamental theorems of quantum mechanics and forms the basis for reliable and efficient navigation in the Hilbert space of a quantum system with a time-dependent Hamiltonian by adiabatic evolution. In the absence of level crossings, i.e. without degeneracies, and under adiabatic time evolution all eigenstates of the Hamiltonian keep their energetic order, labeled by a conserved integer quantum number. Thus, controlling the eigenstates of the Hamiltonian and their energetic order in asymptotic limits allows one to engineer a perfect adiabatic transfer between a large number of initial and target states. The fidelity of the state transfer is only limited by adiabaticity and the selection of target states is controlled by the integer invariant labeling the order of eigenstates. We show here, for the example of a finite superlattice Wannier-Stark ladder, i.e. a one-dimensional lattice with alternating hopping amplitudes and constant potential gradient, that such an adiabatic control of eigenstates can be used to induce perfectly quantized single-particle transport across a pre-determined number of lattice sites. We dedicate this paper to the memory of our late friend and colleague Bruce Shore, who was an expert in adiabatic processes and taught us much about this field.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Razmik G. UnanyanORCiD, Nikolay V. VitanovORCiD, Michael FleischhauerORCiD
URN:urn:nbn:de:hbz:386-kluedo-81704
DOI:https://doi.org/10.1088/1361-6455/acb11a
ISSN:1361-6455
Titel des übergeordneten Werkes (Englisch):Journal of Physics B: Atomic, Molecular and Optical Physics
Verlag:IOP
Dokumentart:Wissenschaftlicher Artikel
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):30.04.2024
Jahr der Erstveröffentlichung:2023
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Publikation (Server):30.04.2024
Ausgabe / Heft:56/4
Seitenzahl:9
Quelle:https://iopscience.iop.org/article/10.1088/1361-6455/acb11a
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Physik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 530 Physik
Sammlungen:Open-Access-Publikationsfonds
Lizenz (Deutsch):Zweitveröffentlichung