UNIVERSITÄTSBIBLIOTHEK

Optimal Control and Asymptotic Analysis of the Cattaneo Model

  • Optimal control of partial differential equations is an important task in applied mathematics where it is used in order to optimize, for example, industrial or medical processes. In this thesis we investigate an optimal control problem with tracking type cost functional for the Cattaneo equation with distributed control, that is, \(\tau y_{tt} + y_t - \Delta y = u\). Our focus is on the theoretical and numerical analysis of the limit process \(\tau \to 0\) where we prove the convergence of solutions of the Cattaneo equation to solutions of the heat equation. We start by deriving both the Cattaneo and the classical heat equation as well as introducing our notation and some functional analytic background. Afterwards, we prove the well-posedness of the Cattaneo equation for homogeneous Dirichlet boundary conditions, that is, we show the existence and uniqueness of a weak solution together with its continuous dependence on the data. We need this in the following, where we investigate the optimal control problem for the Cattaneo equation: We show the existence and uniqueness of a global minimizer for an optimal control problem with tracking type cost functional and the Cattaneo equation as a constraint. Subsequently, we do an asymptotic analysis for \(\tau \to 0\) for both the forward equation and the aforementioned optimal control problem and show that the solutions of these problems for the Cattaneo equation converge strongly to the ones for the heat equation. Finally, we investigate these problems numerically, where we examine the different behaviour of the models and also consider the limit \(\tau \to 0\), suggesting a linear convergence rate.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasserangaben:Sebastian Blauth
URN (Permalink):urn:nbn:de:hbz:386-kluedo-53727
Betreuer:René Pinnau
Dokumentart:Masterarbeit
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):13.09.2018
Jahr der Veröffentlichung:2018
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):20.09.2018
Freies Schlagwort / Tag:Asymptotic Analysis; Numerical Analysis; Optimal Control; Partial Differential Equations
Seitenzahl:90
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):35-XX PARTIAL DIFFERENTIAL EQUATIONS
49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX]
65-XX NUMERICAL ANALYSIS
80-XX CLASSICAL THERMODYNAMICS, HEAT TRANSFER (For thermodynamics of solids, see 74A15)
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung (CC BY 4.0)