The Continuous Series of Critical Points of the Two-Matrix Model at N -> infinity in the Double Scaling Limit

  • The critical points of the continuous series are characterized by two complex numbers l_1,l_2 (Re(l_1,l_2)< 0), and a natural number n (n>=3) which enters the string susceptibility constant through gamma = -2/(n-1). The critical potentials are analytic functions with a convergence radius depending on l_1 or l_2. We use the orthogonal polynomial method and solve the Schwinger-Dyson equations with a technique borrowed from conformal field theory.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:S. Balaska, J. Maeder, Werner Rühl
URN (permanent link):urn:nbn:de:hbz:386-kluedo-10296
Document Type:Preprint
Language of publication:English
Year of Completion:1998
Year of Publication:1998
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Physik
DDC-Cassification:530 Physik

$Rev: 12793 $