Adaptive Exponential Finite Elements for a Phase Field Fracture Model

  • Fracture phenomena can be described by a phase field model in which an independent scalar field variable in addition to the mechanical displacement is considered [3]. This field approximates crack surfaces as a continuous transition zone from a value that indicates intact material to another value that represents the crack. For an accurate approximation of cracks, narrow transition zones resulting in steep gradients of the fracture field are required. This necessitates a high mesh density in finite element simulations, which leads to an increased computational effort. In order to circumvent this problem without forfeiting accuracy, exponential shape functions were introduced in the discretization of the phase field variable, see [4]. These special shape functions allow for a better approximation of steep gradients of the phase field with less elements as compared to standard Lagrange elements. Unfortunately, the orientation of the exponential shape functions is not uniquely determined and needs to be set up in the correct way in order to improve the approximation of smooth cracks. This work solves the issue by adaptively reorientating the exponential shape functions according to the nodal values of the phase field gradient in each element. Furthermore, a local approach is pursued that uses exponential shape function only in the vicinity of the crack, whereas standard bilinear shape function are used away from the crack.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Darius Olesch, Charlotte Kuhn, Alexander Schlüter, Ralf Müller
URN:urn:nbn:de:hbz:386-kluedo-80117
DOI:https://doi.org/10.1002/pamm.202100077
ISSN:1617-7061
Titel des übergeordneten Werkes (Englisch):Proceedings in Applied Mathematics and Mechanics
Verlag:Wiley
Dokumentart:Wissenschaftlicher Artikel
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):12.04.2024
Jahr der Erstveröffentlichung:2021
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Publikation (Server):12.04.2024
Ausgabe / Heft:21/1
Seitenzahl:2
Quelle:https://onlinelibrary.wiley.com/doi/10.1002/pamm.202100077
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Sachgruppen:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Sammlungen:Open-Access-Publikationsfonds
Lizenz (Deutsch):Zweitveröffentlichung