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Fracture phenomena can be described by a phase field model in which an independent scalar field variable in addition to the
mechanical displacement is considered [3]. This field approximates crack surfaces as a continuous transition zone from a
value that indicates intact material to another value that represents the crack. For an accurate approximation of cracks, narrow
transition zones resulting in steep gradients of the fracture field are required. This necessitates a high mesh density in finite
element simulations, which leads to an increased computational effort. In order to circumvent this problem without forfeiting
accuracy, exponential shape functions were introduced in the discretization of the phase field variable, see [4]. These special
shape functions allow for a better approximation of steep gradients of the phase field with less elements as compared to
standard Lagrange elements. Unfortunately, the orientation of the exponential shape functions is not uniquely determined
and needs to be set up in the correct way in order to improve the approximation of smooth cracks. This work solves the
issue by adaptively reorientating the exponential shape functions according to the nodal values of the phase field gradient in
each element. Furthermore, a local approach is pursued that uses exponential shape function only in the vicinity of the crack,
whereas standard bilinear shape function are used away from the crack.
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1 Approximation of brittle cracks by a phase field

The phase field model for brittle fracture proposed by Kuhn and Müller [3] was first introduced in Bourdin [1]. In this model,
the energy density functional contains two contributions, the surface energy density ψs and the elastic energy density ψe.
Additionally, a volumetric-deviatoric split in positive and negative elastic energy density ψe

+/− for the strain according to
Amor et al. [2] is introduced in (1). The formulation includes two field variables, the displacement field u in form of the
linearized strain tensor εεε = 1

2 (∇u+ (∇u)T ) and its deviator e and the fracture field s. The two governing field equations are
the well known equilibrium equation (divσσσ = 0⃗)

ψ(εεε, s) = (s2 + η)
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and the Ginzburg Landau type evolution equation of the phase field

ṡ = −M
[
2sψe

+ − Gc

(
2ϵ∇s+ 1− s

2ϵ

)]

︸ ︷︷ ︸
δψ/δs

. (2)

Eq. (2) describes the evolution of the crack field. The characterizing parameters of both equations are the bulk modulus K,
shear modulus µ, the residual stiffness parameter η, the cracking resistance Gc, the internal lenght scale ϵ and the mobility
parameter M . A detailed description can be found in [3]. Of particular interest is ϵ, which determines the width of the
transition zone of s and plays a key role in the refinement of the discretization.

2 Adaptive shape functions

In general, phase field models describe different material constituents with an additional field variable, which has different
values in different "phases" of the material. In this work, the crack field describes the integrity of the material (cracked: s =
0, sound: s = 1). At the phase interfaces a steep transition from one characteristic value of the phase field to another occurs.
For an improved approximation of this zone Kuhn and Müller [4] introduced exponential shape functions for the phase field
variable. They enable an accurate approximation the phase field transition in the zones with only one element regardless of the
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regularization parameter ϵ. This is achieved by an additional parameter δ, which is constructed as the ratio of element size h
to ϵ. It enables an elementsize independent transition zone. These shape functions can be extended for 2d and 3d by tensorial
multiplication of 1d shape functions [4].
The advantage of the exponential shape functions, comes at the expense of adaptability. The orientation of the shape functions
needs to differ on opposing crack faces [4]. This issue can be solved by reorienting elements at opposite crack surfaces
according to sign of the spatial gradient of s. Though the reorientation can be changed manually for existing cracks, crack
nucleation and unpredictable crack growth requires an adaptive strategy to change the shape functions dynamically. In order to
lower the computational costs and improve the stability of the algorithm, linear shape function are applied in regions with an
almost constant phase field [5]. The choice of the shape function is evaluated by a marking strategy and distance function. In
the first step of the algorithm, all elements are initiated as linear Lagrange elements. Then the relative difference of the surface
energy of an exponential and linear approximation for each element edge is evaluated. If the value reaches a certain limit the
algorithm changes to an exponential shape function. In addition, a distance function also modifies the shape functions of all
elements in the vicinity of a modified element, see [5] for details.

3 Numerical Example

The adaptive strategy is analyzed for a simple shear test, see Fig. 1. The model is a quadratic 2D domain and has an initial
crack of the half length of the body which is vertically bounded. The crack progresses just in the domain with a tensile
volumetric stress, see Fig. 2, as can be expected from Eq. (1). The adaptive algorithm chooses exponential shape functions
(red) around the crack and the rest of the domain is approximated by linear shape function (blue), see Fig. 3. As an example,
Fig. 4 shows the region A of the crack field and shape functions. The red arrows indicate the orientation of the exponential
shape functions for each edge. As can be observed in Fig. 4, the algorithm produced a mirrored orientation at the crack
surfaces leading to a symmetric crack like it is intended.
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Fig. 1: Simple shear test with
boundary at the crack.

A

Fig. 2: Crack phase field s after
rupture.

A

Fig. 3: Shape function for the
crack field.

Fig. 4: Superposition of Fig. 2
and Fig. 3 for region A.
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