• Treffer 1 von 1
Zurück zur Trefferliste

On an Integral Equation Model for Slender Bodies in Low Reynolds-Number Flows

  • The interation of particular slender bodies with low Reynolds-number flows is in the limit 'slenderness to 0' described by a linear Fredholm integral equation of the second kind. The integral operator of this equation has a denumerable set of polynomial eigenfunctions whose corresponding eigenvalues are non-positive and of logarithmic growth. A theorem similiar to a classical result of Plemelj-Privalov for integral operators with Cauchy kernels is proven. In contrast to Cauchy kernel operators, the integral operator maps no Hölder space into itself. A spectral analysis of the integral operator restricted to an appropriate class of analytic functions is performed. The spectral properties of this restricted integral operator suggest a collocation-like method to solve the integral equation numerically. For this numerical scheme, convergence is proven and several computations are presented.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Thomas Götz, Andreas Unterreiter
URN:urn:nbn:de:hbz:386-kluedo-9978
Schriftenreihe (Bandnummer):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (219)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1999
Jahr der Erstveröffentlichung:1999
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):25.02.2000
Freies Schlagwort / Tag:Collocation Method plus; Fredholm integral equation of the second kind; Polynomial Eigenfunctions; Spectral Analysis; Theorem of Plemelj-Privalov
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011