Boundary Conditions in a Lattice Boltzmann Method For Plane Strain Problems

  • The Lattice Boltzmann Method (LBM), e.g. in [1] and [2], can be interpreted as an alternative method for the numerical solution of certain partial differential equations that is not restricted to its origin in computational fluid mechanics. The interpretation of the LBM as a general numerical tool allows to extend the LBM to solid mechanics as well, see e.g. [3], which is concerned with the simulation of elastic solids under simplified deformation assumptions, and [4] as well as [5] which propose LBMs for the general plane strain case. In previous works on a LBM for plain strain such as [5], the treatment of practically relevant boundary conditions like Neumann and Dirichlet type boundary conditions is not the main focus and thus periodic conditions or absorbing layers are specified to simulate numerical examples. In this work, we show how Neumann and Dirichlet type boundary conditions are implemented in our LBM for plane strain from [4].

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Alexander Schlüter, Henning Müller, Ralf Müller
URN:urn:nbn:de:hbz:386-kluedo-80179
DOI:https://doi.org/10.1002/pamm.202100085
ISSN:1617-7061
Parent Title (English):Proceedings in Applied Mathematics and Mechanics
Publisher:Wiley
Document Type:Article
Language of publication:English
Date of Publication (online):2024/04/12
Year of first Publication:2021
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/04/12
Issue:21/1
Page Number:2
Source:https://onlinelibrary.wiley.com/doi/10.1002/pamm.202100085
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung