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The Lattice Boltzmann Method (LBM), e.g. in [1] and [2], can be interpreted as an alternative method for the numerical
solution of certain partial differential equations that is not restricted to its origin in computational fluid mechanics. The
interpretation of the LBM as a general numerical tool allows to extend the LBM to solid mechanics as well, see e.g. [3],
which is concerned with the simulation of elastic solids under simplified deformation assumptions, and [4] as well as [5]
which propose LBMs for the general plane strain case. In previous works on a LBM for plain strain such as [5], the treatment
of practically relevant boundary conditions like Neumann and Dirichlet type boundary conditions is not the main focus and
thus periodic conditions or absorbing layers are specified to simulate numerical examples. In this work, we show how
Neumann and Dirichlet type boundary conditions are implemented in our LBM for plane strain from [4].

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Representing the Plane Strain Problem by Wave Equations

For a linear elastic body with density ρ and Lamé parameters λ and µ under plane strain assumption, the volume dilatation
∇ · u = ϕ as well as the only non-zero component of the rotation vector (∇ × u)z = ψ are governed by the separate wave
equations

c2d∆ϕ =
∂2ϕ

∂t2
and c2s∆ψ =

∂2ψ

∂t2
, where cd =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
. (1)

Herein, u denotes the displacement field. The dilatation and the rotation vector are coupled via the Navier equation

c2d∇ (∇ · u)− c2s∇× (∇× u) = ü, (2)

which results from the balance of linear momentum, Hooke’s law for isotropic linear elastic material and the definition of the
linearized strain tensor.

2 Boundary Conditions in a Lattice Boltzmann Method for Plane Strain Problems

In the LBM, information is represented by distribution functions that are defined on a discretized lattice. The lattice consists
of spatially discrete lattice points, which are connected via lattice links denoted by α. The lattice links are associated with a
lattice speed cα, that determines to which neighbor information may travel in one time step ∆t. The distribution functions are
updated via the explicit rule

fα (x+ cα∆t, t+∆t) = fα (x, t)− 1

τ

[
fα(x, t)− fαeq(x, t)

]
, (3)

where τ is a relaxation time. The distribution functions must be interpreted in relation to the macroscopic fields. We consider
two sets of distribution functions for the dilatation ϕ and the non-zero displacement component ψ of the rotation vector. These
sets of distribution functions are interpreted according to

∑

α

fαψ = ψ, and
∑

α

fαϕ = ϕ. (4)

The particular mesoscopic evolution law is then given by (3), where the equilibrium distribution functions fαψ,eq, fαψ,eq and the
relaxation times τψ and τϕ have to be chosen such that (3) together with the interpretation (4) yields the desired macroscopic
behavior (1). In order to accomplish this, we choose the LBM for the wave equation, proposed by [1]. This model is two-
dimensional and has five lattice velocities at each lattice point, i.e. it is referred to as a D2Q5-model. The same lattice and
time step ∆t is used for both sets of distribution functions. This is possible due to the fact, that the model [1] allows to adjust
the macroscopic wave speed independently of the lattice spacing and the time step by adapting the feq.

The overall algorithm computes the accelerations ün at a particular time step tn from the Navier equation (2) and finite
difference approximations for ∇ϕn as well as ∇×ψn. The acceleration ün at boundary lattice points needs to be determined
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from the boundary conditions. For Neumann boundary conditions, this involves the evaluation of a local balance of momentum
for cells that are generated around each boundary lattice point, as is shown in Fig. 1 a). Assuming, that ρ and ün are constant
in each cell, the acceleration at lattice point k with neighbors r can be approximated as

ünk ≈ 1

VCρ


 ∑

r∈Neighbors

σkr(u
n)nkrlkr +

∫

∂Cext

t∗nda


 , σkr ≈

1

2
σk +

1

2
σr, (5)

where σk/r refers to the Cauchy stress tensor at the respective lattice points, nkr is the outward normal at the shared internal
boundary between the cells of k and the neighbor r, and lkr is the length of this internal boundary. If Dirichlet boundary
conditions u∗ are specified at a lattice point k, the acceleration is computed by substituting un+1

k = u∗ into the integration
scheme, e.g. an explicit Newmark scheme. This relation can subsequently be solved for the acceleration, e.g.

ünk =
2

∆t2
(u∗ − unk )−

2

∆t
u̇nk . (6)

Once ün is known at each lattice point, the displacement un+1 is computed by integration with the explicit Newmark scheme.
Subsequently, the rotation and dilatation is updated at the boundary lattice points by means of a finite difference approximation
of ψn+1

k = (∇×un+1
k )z and ϕn+1

k = ∇·un+1
k . These updated fields are used to set the distribution functions at the boundary

lattice points such that they are consistent with
∑

α

fαψ (xk, tn) = ψn+1
k ,

∑

α

fαϕ (xk, tn) = ϕn+1
k . (7)

Finally, the distribution functions at tn+1 at internal lattice points as well as ψn+1 and ϕn+1 are determined by (3) and (4), re-
spectively. At the boundary lattice points the distribution functions are not changed again, i.e. fαψ/ϕ(xk, tn+1) = fαψ/ϕ(xk, tn).
This algorithm allows to simulate problems with boundary conditions that are relevant in computational solid mechanics such
as a plate with a hole that is subject to tensile Neumann boundary conditions at the top and at the bottom edge, as is shown in
Fig. 1 b).
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Fig. 1: a) The implementation of Neumann boundary conditions. b) Comparison of the LBM and the FEM for a tension loaded quadratic
domain (L × L) with a circular hole (radius 0.266L). The plot shows the scaled deformed configuration for the LBM (dots represent the
lattice points) as well as for a benchmark FEM simulation (contour plot of the vertical displacement component uy in the background).
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