UNIVERSITÄTSBIBLIOTHEK

Modeling and design optimization of textile-like materials via homogenization and one-dimensional models of elasticity

  • The work consists of two parts. In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided. In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Vladimir Shiryaev
URN (Permalink):urn:nbn:de:hbz:386-kluedo-40194
Betreuer:Grigory Panasenko, Axel Klar
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):09.03.2015
Jahr der Veröffentlichung:2015
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:27.02.2015
Datum der Publikation (Server):09.03.2015
Freies Schlagwort / Tag:Beam models; Elasticity; Homogenization; Optimization; Partial Differential Equations
Seitenzahl:VIII, 110
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):35-XX PARTIAL DIFFERENTIAL EQUATIONS
49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX]
74-XX MECHANICS OF DEFORMABLE SOLIDS
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 13.02.2015