Effective equations for anisotropic glioma spread with proliferation: a multiscale approach

  • Glioma is a common type of primary brain tumor, with a strongly invasive potential, often exhibiting nonuniform, highly irregular growth. This makes it difficult to assess the degree of extent of the tumor, hence bringing about a supplementary challenge for the treatment. It is therefore necessary to understand the migratory behavior of glioma in greater detail. In this paper we propose a multiscale model for glioma growth and migration. Our model couples the microscale dynamics (reduced to the binding of surface receptors to the surrounding tissue) with a kinetic transport equation for the cell density on the mesoscopic level of individual cells. On the latter scale we also include the proliferation of tumor cells via effects of interaction with the tissue. An adequate parabolic scaling yields a convection-diffusion-reaction equation, for which the coefficients can be explicitly determined from the information about the tissue obtained by diffusion tensor imaging. Numerical simulations relying on DTI measurements confirm the biological findings that glioma spreads along white matter tracts.

Volltext Dateien herunterladen

Metadaten exportieren

Verfasserangaben:Christian Engwer, Alexander Hunt, Christina Surulescu
URN (Permalink):urn:nbn:de:hbz:386-kluedo-38934
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):14.10.2014
Jahr der Veröffentlichung:2014
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):14.10.2014
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012