A-infinity-bimodules and Serre A-infinity-functors

  • This dissertation is intended to transport the theory of Serre functors into the context of A-infinity-categories. We begin with an introduction to multicategories and closed multicategories, which form a framework in which the theory of A-infinity-categories is developed. We prove that (unital) A-infinity-categories constitute a closed symmetric multicategory. We define the notion of A-infinity-bimodule similarly to Tradler and show that it is equivalent to an A-infinity-functor of two arguments which takes values in the differential graded category of complexes of k-modules, where k is a commutative ground ring. Serre A-infinity-functors are defined via A-infinity-bimodules following ideas of Kontsevich and Soibelman. We prove that a unital closed under shifts A-infinity-category over a field admits a Serre A-infinity-functor if and only if its homotopy category admits an ordinary Serre functor. The proof uses categories and Serre functors enriched in the homotopy category of complexes of k-modules. Another important ingredient is an A-infinity-version of the Yoneda Lemma.
  • A-unendlich-Bimoduln und Serresche A-unendlich-Funktoren

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Oleksandr Manzyuk
URN (Permalink):urn:nbn:de:hbz:386-kluedo-21410
Betreuer:Gert-Martin Greuel
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2007
Jahr der Veröffentlichung:2007
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:25.10.2007
Datum der Publikation (Server):06.11.2007
Freies Schlagwort / Tag:A-infinity-bimodule; A-infinity-category; A-infinity-functor; Serre functor; multicategory
GND-Schlagwort:Homologische Algebra; Kategorientheorie
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):18-XX CATEGORY THEORY; HOMOLOGICAL ALGEBRA (For commutative rings see 13Dxx, for associative rings 16Exx, for groups 20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for algebraic topologyg) / 18Dxx Categories with structure / 18D10 Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23]
18-XX CATEGORY THEORY; HOMOLOGICAL ALGEBRA (For commutative rings see 13Dxx, for associative rings 16Exx, for groups 20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for algebraic topologyg) / 18Dxx Categories with structure / 18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
18-XX CATEGORY THEORY; HOMOLOGICAL ALGEBRA (For commutative rings see 13Dxx, for associative rings 16Exx, for groups 20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for algebraic topologyg) / 18Dxx Categories with structure / 18D20 Enriched categories (over closed or monoidal categories)
18-XX CATEGORY THEORY; HOMOLOGICAL ALGEBRA (For commutative rings see 13Dxx, for associative rings 16Exx, for groups 20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for algebraic topologyg) / 18Gxx Homological algebra [See also 13Dxx, 16Exx, 20Jxx, 55Nxx, 55Uxx, 57Txx] / 18G55 Homotopical algebra
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $