Quantile Sieve Estimates for Time Series

  • We consider the problem of estimating the conditional quantile of a time series at time \(t\) given observations of the same and perhaps other time series available at time \(t-1\). We discuss sieve estimates which are a nonparametric versions of the Koenker-Bassett regression quantiles and do not require the specification of the innovation law. We prove consistency of those estimates and illustrate their good performance for light- and heavy-tailed distributions of the innovations with a small simulation study. As an economic application, we use the estimates for calculating the value at risk of some stock price series.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jürgen Franke, Jean-Pierre Stockis, Joseph Tadjuidje
URN (Permalink):urn:nbn:de:hbz:386-kluedo-14779
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (105)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2007
Jahr der Veröffentlichung:2007
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):05.02.2007
Freies Schlagwort / Tag:conditional quantile ; neural network ; qualitative threshold model; sieve estimate ; time series
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $