Semi-Simultaneous Flows and Binary Constrained (Integer) Linear Programs

  • Linear and integer programs are considered whose coefficient matrices can be partitioned into K consecutive ones matrices. Mimicking the special case of K=1 which is well-known to be equivalent to a network flow problem we show that these programs can be transformed to a generalized network flow problem which we call semi-simultaneous (se-sim) network flow problem. Feasibility conditions for se-sim flows are established and methods for finding initial feasible se-sim flows are derived. Optimal se-sim flows are characterized by a generalization of the negative cycle theorem for the minimum cost flow problem. The issue of improving a given flow is addressed both from a theoretical and practical point of view. The paper concludes with a summary and some suggestions for possible future work in this area.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Alexander Engau, Horst W. Hamacher
URN (Permalink):urn:nbn:de:hbz:386-kluedo-14361
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (99)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2006
Jahr der Veröffentlichung:2006
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):12.07.2006
Freies Schlagwort / Tag:consecutive ones matrix; integer programming; linear programming; network flows
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $