Multiscale Deformation Analysis by Cauchy-Navier Wavelets

  • A geoscientifically relevant wavelet approach is established for the classical (inner) displacement problem corresponding to a regular surface (such as sphere, ellipsoid, actual earth's surface). Basic tools are the limit and jump relations of (linear) elastostatics. Scaling functions and wavelets are formulated within the framework of the vectorial Cauchy-Navier equation. Based on appropriate numerical integration rules a pyramid scheme is developed providing fast wavelet transform (FWT). Finally multiscale deformation analysis is investigated numerically for the case of a spherical boundary.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:M. K. Abeyratne, W. Freeden, C. Mayer
URN (permanent link):urn:nbn:de:hbz:386-kluedo-11900
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (247)
Document Type:Preprint
Language of publication:English
Year of Completion:2002
Year of Publication:2002
Publishing Institute:Technische Universität Kaiserslautern
Tag:Cauchy-Navier equation ; Cauchy-Navier scaling function and wavelet; displacement problem ; limit and jump relations
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik

$Rev: 12793 $