String Rewriting and Gröbner Bases - A General Approach to Monoid and Group Rings

  • The concept of algebraic simplification is of great importance for the field of symbolic computation in computer algebra. In this paper we review somefundamental concepts concerning reduction rings in the spirit of Buchberger. The most important properties of reduction rings are presented. Thetechniques for presenting monoids or groups by string rewriting systems are used to define several types of reduction in monoid and group rings. Gröbnerbases in this setting arise naturally as generalizations of the corresponding known notions in the commutative and some non-commutative cases. Severalresults on the connection of the word problem and the congruence problem are proven. The concepts of saturation and completion are introduced formonoid rings having a finite convergent presentation by a semi-Thue system. For certain presentations, including free groups and context-free groups, theexistence of finite Gröbner bases for finitely generated right ideals is shown and a procedure to compute them is given.

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Klaus Madlener, Birgit Reinert
URN (Permalink):urn:nbn:de:hbz:386-kluedo-4385
Schriftenreihe (Bandnummer):Reports on Computer Algebra (ZCA Report) (16)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1997
Jahr der Veröffentlichung:1997
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $