Asymptotic Order of the Parallel Volume Difference

  • In this paper we investigate the asymptotic behaviour of the parallel volume of fixed non-convex bodies in Minkowski spaces as the distance \(r\) tends to infinity. We will show that the difference of the parallel volume of the convex hull of a body and the parallel volume of the body itself can at most have order \(r^{d-2}\) in a \(d\)-dimensional space. Then we will show that in Euclidean spaces this difference can at most have order \(r^{d-3}\). These results have several applications, e.g. we will use them to compute the derivative of \(f_\mu(rK)\) in \(r = 0\), where \(f_\mu\) is the Wills functional or a similar functional, \(K\) is a body and \(rK\) is the Minkowski-product of \(r\) and \(K\). Finally we present applications concerning Brownian paths and Boolean models and derive new proofs for formulae for intrinsic volumes.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jürgen Kampf
URN (Permalink):urn:nbn:de:hbz:386-kluedo-29122
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (139a)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):27.02.2012
Jahr der Veröffentlichung:2012
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):27.02.2012
Freies Schlagwort / Tag:Convex geometry; Non-convex body; Parallel volume; Random body; Wills functional
Seitenzahl:32
Bemerkung:
This document is an updated version of WiMa Report 139. A part of the content was removed and will become an own article.
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 516 Geometrie
5 Naturwissenschaften und Mathematik / 51 Mathematik / 519 Wahrscheinlichkeiten, angewandte Mathematik
MSC-Klassifikation (Mathematik):52-XX CONVEX AND DISCRETE GEOMETRY / 52Axx General convexity / 52A20 Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45]
52-XX CONVEX AND DISCRETE GEOMETRY / 52Axx General convexity / 52A21 Finite-dimensional Banach spaces (including special norms, zonoids, etc.) [See also 46Bxx]
52-XX CONVEX AND DISCRETE GEOMETRY / 52Axx General convexity / 52A22 Random convex sets and integral geometry [See also 53C65, 60D05]
52-XX CONVEX AND DISCRETE GEOMETRY / 52Axx General convexity / 52A38 Length, area, volume [See also 26B15, 28A75, 49Q20]
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 15.02.2012

$Rev: 13581 $