Network design decisions in supply chain planning

  • Structuring global supply chain networks is a complex decision-making process. The typical inputs to such a process consist of a set of customer zones to serve, a set of products to be manufactured and distributed, demand projections for the different customer zones, and information about future conditions, costs (e.g. for production and transportation) and resources (e.g. capacities, available raw materials). Given the above inputs, companies have to decide where to locate new service facilities (e.g. plants, warehouses), how to allocate procurement and production activities to the variousmanufacturing facilities, and how to manage the transportation of products through the supply chain network in order to satisfy customer demands. We propose a mathematical modelling framework capturing many practical aspects of network design problems simultaneously. For problems of reasonable size we report on computational experience with standard mathematical programming software. The discussion is extended with other decisions required by many real-life applications in strategic supply chain planning. In particular, the multi-period nature of some decisions is addressed by a more comprehensivemodel, which is solved by a specially tailored heuristic approach. The numerical results suggest that the solution procedure can identify high quality solutions within reasonable computational time.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:T. Melo, S. Nickel, F. Saldanha-da-Gama
URN (permanent link):urn:nbn:de:hbz:386-kluedo-15627
Serie (Series number):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (140)
Document Type:Report
Language of publication:English
Year of Completion:2008
Year of Publication:2008
Publishing Institute:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Faculties / Organisational entities:Fraunhofer (ITWM)
DDC-Cassification:510 Mathematik

$Rev: 12793 $