Optimization of the cooling strategy during cryogenic milling of Ti-6Al-4 V when applying a sub-zero metalworking fluid

  • Due to an excellent ratio of high strength to low density, as well as a strong corrosion resistance, the titanium alloy Ti-6Al-4 V is widely used in industrial applications. However, Ti-6Al-4 V is also a difficult-to-cut material because of its low thermal conductivity and high chemical reactivity, especially at elevated temperatures. As a result, machining Ti-6Al-4 V is characterized by high thermal loads and a rapidly progressing thermo-chemical induced tool wear. An adequate cooling strategy is essential to reduce the thermal load and therefore tool wear. Sub-zero metalworking fluids (MWF) which are applied at liquid state but at supply temperatures below the ambient temperature, offer great potential to significantly reduce the thermal load when machining Ti-6Al-4 V. Within the presented research, systematically varied sub-zero cooling strategies are applied when milling Ti-6Al-4 V. The influences of the supply temperature, as well as the volume flow and the outlet velocity are investigated aiming at a reduction of the thermal loads that occur during milling. The milling experiments were recorded using high-speed cameras in order to characterize the impact of the cooling strategies and resolve the behavior of the MWF. Additionally, the novel sub-zero cooling approach is compared to a cryogenic CO2 cooling strategy. The results show that the optimized sub-zero cooling strategy led to a sufficient reduction of the thermal loads and does outperform the cryogenic cooling even at elevated CO2 mass flows.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Kevin GutzeitORCiD, Maximilian Berndt, Jonas Schulz, Daniel Müller, Benjamin Kirsch, Erik von Harbou, Jan C. Aurich
URN:urn:nbn:de:hbz:386-kluedo-78944
DOI:https://doi.org/10.1007/s11740-022-01178-z
ISSN:1863-7353
Titel des übergeordneten Werkes (Englisch):Production Engineering
Verlag:Springer Nature - Springer
Dokumentart:Wissenschaftlicher Artikel
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):26.03.2024
Jahr der Erstveröffentlichung:2022
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Publikation (Server):26.03.2024
Ausgabe / Heft:17
Seitenzahl:10
Erste Seite:501
Letzte Seite:510
Quelle:https://link.springer.com/article/10.1007/s11740-022-01178-z
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Sachgruppen:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Sammlungen:Open-Access-Publikationsfonds
Lizenz (Deutsch):Zweitveröffentlichung