Overexpression of the vacuolar sugar importer BvTST1 from sugar beet in Camelina improves seed properties and leads to altered root characteristics

  • Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil-seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Gloria O. OkoobohORCiD, Ilka HaferkampORCiD, Marzieh ValifardORCiD, Benjamin PommerrenigORCiD, Amélie KellyORCiD, Ivo FeussnerORCiD, Horst Eckehard NeuhausORCiD
URN:urn:nbn:de:hbz:386-kluedo-80925
DOI:https://doi.org/10.1111/ppl.13653
ISSN:1399-3054
Parent Title (English):Physiologia Plantarum
Publisher:Wiley
Document Type:Article
Language of publication:English
Date of Publication (online):2024/04/22
Year of first Publication:2022
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/04/22
Issue:174/2
Page Number:16
Source:https://onlinelibrary.wiley.com/doi/10.1111/ppl.13653
Faculties / Organisational entities:Kaiserslautern - Fachbereich Biologie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 570 Biowissenschaften, Biologie
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung