Investigation of the influence of cooling lubricants on workpiece topography

  • Model-based prediction is becoming increasingly important to meet the ever-increasing demands on manufacturing. In grinding, the prediction of the process forces and the generated surface by physical models are particularly important.Since cooling lubricants are almost always used on an industrial scale, the grinding model, developed at our institut, must be extended to include this component. Therefore, in order to implement cooling lubricants into the FEM-based model, it is first necessary to investigate the behaviors and effects of cooling lubricants in real experiments. Various influencing factors such as the scratching speed of individual abrasive grains in interaction with cooling lubricants need to be investigated. However, the existing physical grinding model is not limited exclusively to the prediction of the resulting forces. It is also supposed to be able to qualitatively predict the expected resulting surface of the workpiece. Hence, this paper will focus on the topographic characteristics that can occur in the scratch test due to different cooling lubricants and scratching speeds.Based on real experiments on a test rig for such scratch tests, it has been shown that different scratch speeds have a negligible influence on the topographical nature and expression of a scratch. In contrast, however, there is a direct influence of cooling lubricants on the topographic properties. This effect is additionally influenced by the viscosity of the cooling lubricant used.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Felix Kästner, Kristin M. de Payrebrune
URN:urn:nbn:de:hbz:386-kluedo-80869
DOI:https://doi.org/10.1002/pamm.202200128
ISSN:1617-7061
Parent Title (English):Proceedings in Applied Mathematics and Mechanics
Publisher:Wiley
Document Type:Article
Language of publication:English
Date of Publication (online):2024/04/19
Year of first Publication:2023
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/04/19
Issue:23/1
Page Number:6
Source:https://onlinelibrary.wiley.com/doi/10.1002/pamm.202200128
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung