Mechanical performance and supermolecular morphology of void free polypropylene manufactured by fused filament fabrication

  • It is known from the literature that freedom from macroscopic defects (voids) is an essential prerequisite for good mechanical properties of 3D-printed components manufactured using fused filament fabrication. The present study further shows that the morphology and mechanical properties of void free components are significantly influenced by the choice of process parameters. Components that were printed at low temperatures and high speeds show fair and inhomogeneous supermolecular morphology, clearly visible weld seams and a special flow-induced staggered structure of the individual strands laid-up. At higher magnification in the optical microscope, transcrystalline structures are visible starting from the contact area between the strands, that is, crystallization has started at the interface between the strands and is moving forward towards the center of the strands. In contrast, the samples printed at high temperatures and low speeds show a homogeneous supermolecular morphology with overall larger spherulites and a higher degree of crystallinity and compared to the specimens printed with the low temperature/high speed-set much better mechanical properties. A numerical simulation of the temperature at the contact point of the strand emerging from the hot nozzle and the cooled strand neighbor agrees well with the measured behavior. The thermal simulation thus enables the temperature to be calculated at any point in time in the welding contact and thus access to the local thermal conditions during joining, cooling and the formation of the morphology.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Miaozi Huang, Yao Xu, Alois K. SchlarbORCiD
URN:urn:nbn:de:hbz:386-kluedo-80331
DOI:https://doi.org/10.1002/app.51409
ISSN:1097-4628
Parent Title (English):Journal of Applied Polymer Science
Publisher:Wiley
Document Type:Article
Language of publication:English
Date of Publication (online):2024/04/16
Year of first Publication:2021
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/04/16
Issue:138/47
Page Number:11
Source:https://onlinelibrary.wiley.com/doi/10.1002/app.51409
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung