Analyzing Anisotropic Exchange in a Pentanuclear Os2Ni3 Complex

  • Spin Hamiltonian parameters of a pentanuclear Os Ni cyanometallate complex are derived from ab initio wave function based calculations, namely valence-type configuration interaction calculations with a complete active space including spin-orbit interaction (CASOCI) in a single-step procedure. While fits of experimental data performed so far could reproduce the data but the resulting parameters were not satisfactory, the parameters derived in the present work reproduce experimental data and at the same time have a reasonable size. The one-centre parameters (local matrices and single-ion zero field splitting tensors) are within an expected range, the anisotropic exchange parameters obtained in this work for an Os−Ni pair are not exceedingly large but determine the low-T part of the experimental χT curve. Exchange interactions (both isotropic and anisotropic) obtained from CASOCI have to be scaled by a factor of 2.5 to obtain agreement with experiment, a known deficiency of such types of calculation. After scaling the parameters, the isotropic Os−Ni exchange coupling constant is  cm−1 and the D parameter of the (nearly axial) anisotropic Os−Ni exchange is −1, so anisotropic exchange is larger in absolute size than isotropic exchange. The negative value of the isotropic J (indicating antiferromagnetic coupling) seemingly contradicts the large-temperature behaviour of the temperature dependent susceptibility curve, but this is caused by the negative g value of the Os centres. This negative g value is a universal feature of a pseudo-octahedral coordination with configuration and strong spin-orbit interaction. Knowing the size of these exchange interactions is important because Os(CN) is a versatile building block for the synthesis of / magnetic materials.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Andreas Heimermann, Christoph van Wüllen
URN:urn:nbn:de:hbz:386-kluedo-80157
DOI:https://doi.org/10.1002/chem.202101972
ISSN:1521-3765
Parent Title (English):Chemistry – A European Journal
Publisher:Wiley
Document Type:Article
Language of publication:English
Date of Publication (online):2024/04/12
Year of first Publication:2021
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/04/12
Issue:27/61
Page Number:11
First Page:15148
Last Page:15158
Source:https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202101972
Faculties / Organisational entities:Kaiserslautern - Fachbereich Chemie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 540 Chemie
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung