Micro milling of additively manufactured AISI 316L: impact of the layerwise microstructure on the process results

  • In the field of metal additive manufacturing (AM), one of the most used methods is selective laser melting (SLM)—building components layer by layer in a powder bed via laser. The process of SLM is defined by several parameters like laser power, laser scanning speed, hatch spacing, or layer thickness. The manufacturing of small components via AM is very difficult as it sets high demands on the powder to be used and on the SLM process in general. Hence, SLM with subsequent micromilling is a suitable method for the production of microstructured, additively manufactured components. One application for this kind of components is microstructured implants which are typically unique and therefore well suited for additive manufacturing. In order to enable the micromachining of additively manufactured materials, the influence of the special properties of the additive manufactured material on micromilling processes needs to be investigated. In this research, a detailed characterization of additive manufactured workpieces made of AISI 316L is shown. Further, the impact of the process parameters and the build-up direction defined during SLM on the workpiece properties is investigated. The resulting impact of the workpiece properties on micromilling is analyzed and rated on the basis of process forces, burr formation, surface roughness, and tool wear. Significant differences in the results of micromilling were found depending on the geometry of the melt paths generated during SLM.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Sebastian GrecoORCiD, Sonja Kieren-Ehses, Benjamin Kirsch, Jan C. Aurich
URN:urn:nbn:de:hbz:386-kluedo-77872
DOI:https://doi.org/10.1007/s00170-020-06387-3
ISSN:1433-3015
Parent Title (English):The International Journal of Advanced Manufacturing Technology
Publisher:Springer Nature - Springer
Document Type:Article
Language of publication:English
Date of Publication (online):2024/03/08
Year of first Publication:2020
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/03/08
Issue:112
Page Number:13
First Page:361
Last Page:373
Source:https://link.springer.com/article/10.1007/s00170-020-06387-3
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung