Habitat fragmentation and forest management alter woody plant communities in a Central European beech forest landscape

  • Habitat fragmentation and forest management have been considered to drastically alter the nature of forest ecosystems globally. However, much uncertainty remains regarding the causative mechanisms mediating temperate forest responses, such as forest physical environment and the structure of woody plant assemblages, regardless of the role these forests play for global sustainability. In this paper, we examine how both habitat fragmentation and timber exploitation via silvicultural operations affect these two factors at local and habitat spatial scales in a hyper-fragmented landscape of mixed beech forests spanning more than 1500 km2 in SW Germany. Variables were recorded across 57 1000 m2 plots covering four habitats: small forest fragments, forest edges within large control forests, as well as managed and unmanaged forest interior sites. As expected, forest habitats differed in disturbance level, physical conditions and community structure at plot and habitat scale. Briefly, diversity of plant assemblages differed across all forest habitats (highest in edge forests) and correlated with integrative indices of edge, fragmentation and management effects. Surprisingly, managed and unmanaged forests did not differ in terms of species richness at local spatial scale, but managed forests exhibited a clear signal of physical/floristic homogenization as species promoted by silviculture proliferated; i.e. impoverished communities at landscape scale. Moreover, functional composition of plant communities responded to the microclimatic regime within forest fragments, resulting in a higher prevalence of species adapted to these microclimatic conditions. Our results underscore the notion that forest fragmentation and silvicultural management (1) promote changes in microclimatic regimes, (2) alter the balance between light-demanding and shade-adapted species, (3) support diverse floras across forest edges, and (4) alter patterns of beta diversity. Hence, in human-modified landscapes edge-affected habitats can be recognized as biodiversity reservoirs in contrast to impoverished managed interior forests. Furthermore, our results ratify the role of unmanaged forests as a source of environmental variability, species turnover, and distinct woody plant communities.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Kevin Wilhelm BähnerORCiD, Marco TabarelliORCiD, Burkhard BüdelORCiD, Rainer WirthORCiD
URN:urn:nbn:de:hbz:386-kluedo-77832
DOI:https://doi.org/10.1007/s10531-020-01996-6
ISSN:1572-9710
Parent Title (English):Biodiversity and Conservation
Publisher:Springer Nature - Springer
Document Type:Article
Language of publication:English
Date of Publication (online):2024/03/07
Year of first Publication:2020
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/03/07
Issue:29
Page Number:19
Source:https://link.springer.com/article/10.1007/s10531-020-01996-6
Faculties / Organisational entities:Kaiserslautern - Fachbereich Biologie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 570 Biowissenschaften, Biologie
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung