Synthesis and Characterization of Recent Zeolites with Unusual Pore Architectures

  • The main focus of this dissertation is the synthesis and characterization of more recent zeolites with different pore architectures. The unique shape-selective properties of the zeolites are important in various chemical processes and the new zeolites containing novel internal pore architectures are of high interest, since they could lead to further improvement of existing processes or open the way to new applications. This dissertation is organized in the following way: The first part is focused on the synthesis of selected recent zeolites with different pore architectures and their modification to the acidic and bifunctional forms. The second part comprises the characterization of the physicochemical properties of the prepared zeolites by selected physicochemical methods, viz. powder X-ray diffractometry (XRD), N2 adsorption, thermogravimetric analysis (TGA/DTA/MS), ultraviolet-visible (UV-Vis) spectroscopy, atomic absorption spectroscopy (AAS), infrared (IR) spectroscopy, scanning electron microscopy (SEM), 27Al and 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, temperature-programmed reduction (TPR), temperature-programmed desorption of pyridine (pyridine TPD) and adsorption experiments with hydrocarbon adsorptives. The third part of this work is devoted to the application of test reactions, i.e., the acid catalyzed disproportionation of ethylbenzene and the bifunctional hydroconversion of n-decane, to characterize the pore size and architecture of the prepared zeolites. They are known to be valuable tools for exploring the pore structure of zeolites. Finally, an additional test, viz. the competitive hydrogenation of 1-hexene and 2,4,4-trimethyl-1-pentene, has been applied to probe the location of noble metals in medium pore zeolite. The synthesis of the following zeolite molecular sieves was successfully performed in the frame of this thesis (they are ranked according to the largest window size in the respective structure): • 14-MR pores: UTD-1, CIT-5, SSZ-53 and IM-12 • 12-MR pores: ITQ-21 and MCM-68 • 10-MR pores: SSZ-35 and MCM-71 All of them were obtained as pure phase (except zeolite MCM-71 with a minor impurity phase that is hardly to avoid and also present in samples shown in the patent literature). The synthesis conditions are very critical with respect to the formation of the zeolite with a given structure. In this work, the recommended synthesis recipes are included. Among the 14-MR zeolites, the aluminosilicates UTD-1 (nSi/nAl = 28), CIT-5 (nSi/nAl = 116) and SSZ-53 (nSi/nAl = 55) with unidimensional extra-large pore opening formed from 14-MR rings exhibit promising catalytic properties with high thermal stability and they possess strong Brønsted-acid sites. By contrast, the germanosilicate IM-12 with a structure containing 14-MR channels intersecting with 12-MR channels is unstable toward moisture. It was found that UTD-1 and SSZ-53 zeolites are highly active catalysts for the acid catalyzed disproportionation of ethylbenzene and n-decane hydroconversion due to their high Brønsted acidity. To explore their pore structures, the applied two test reactions suggest that UTD-1, CIT-5 and SSZ-53 zeolites contain a very open pore system (12-MR or larger pore systems) because the product distributions are not hampered by too small pores. ITQ-21, a germanoaluminosilicate zeolite with a three-dimensional pore system and large spherical cages accessible through six 12-MR windows, can be synthesized with nSi/nAl ratios between 27 and >200. It possesses a large amount of Brønsted-acid sites. The aluminosilicate zeolite MCM-68 (nSi/nAl = 9) is an extremely active catalyst in the disproportionation of ethylbenzene and in the n-decane hydroconversion. This is due to the presence of a high density of strong Brønsted-acid sites in its structure. The disproportionation of ethylbenzene suggests that MCM-68 is a large pore (i.e., at least 12-MR) zeolite, in agreement with its crystallographic structure. In the hydroconversion of n-decane, the presence of tribranched and ethylbranched isomers and a high isopentane yield of 58 % in the hydrocracked products suggest the presence of large (12-MR) pores in its structure. By contrast, a relatively high value for CI* (modified constraint index) of 2.9 suggests the presence of medium (10-MR) pores in its structure. As a whole, the results are in-line with the crystallographic structure of MCM-68. SSZ-35, a 10-MR zeolite, can be synthesized in a broad range of nSi/nAl ratios between 11 and >500. This zeolite is interesting in terms of shape selectivity resulting from its unusual pore system having unidimensional channels alternating between 10-MR windows and large 18-MR cages. This thermally very stable zeolite contains both, strong Brønsted- and strong Lewis-acid sites. The disproportionation of ethylbenzene classifies SSZ-35 as a large pore zeolite. In the hydroconversion of n-decane, the suppression of bulky ethyloctanes and propylheptane clearly suggests the presence of 10-MR sections in the pore system. By contrast, the low CI* values of 1.2-2.3 and the high isopentane yields of 56-60 % in the hydrocracked products suggest that SSZ-35 also possesses larger intracystalline voids, i.e., the 18-MR cages. The results from the catalytic characterization are in good agreement with the crystallographic structure of zeolite SSZ-35. It was also found that the nSi/nAl ratio influences the crystallite size and therefore the external surface area. As a consequence, product selectivities are also influenced: The lowest nSi/nAl ratio or the smallest crystallite size sample produces larger amounts of the relatively bulky products. The formation of these products probably results from the higher conversion or they are preferentially formed on the external surface area of the catalyst. Zeolite MCM-71 (nSi/nAl = 8) possesses an extremely thermally stable structure and contains a high concentration of Brønsted-acid sites. Its structure allows for the separation of n-alkanes from branched alkanes by selective adsorption. MCM-71 exhibits unique shape-selective properties towards the product distribution in ethylbenzene disproportionation, which is different to those obtained in the medium pore SSZ-35 zeolite. All reaction parameters are fulfilled to classify MCM-71 as medium pore zeolite and this is in good agreement with its reported structure consisting of two-dimensional network of elliptical 10-MR channels and an orthogonal sinusoidal 8-MR channels. The competitive hydrogenation of 1-hexene and 2,4,4-trimethyl-1-pentene was exploited to probe that the major part of the noble metal is located inside the intracrystalline void volume of the medium pore zeolite SSZ-35.
  • Synthese und Charakterisierung von neue Zeolithen mit ungewöhnlicher Porenarchitektur

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Supak Tontisirin
URN (Permalink):urn:nbn:de:hbz:386-kluedo-25242
Betreuer:Stefan Ernst
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2010
Jahr der Veröffentlichung:2010
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:13.07.2010
Datum der Publikation (Server):21.07.2010
Freies Schlagwort / Tag:Disproportionierung von Ethylbenzol; Isomerisierung von n-Decan; Zeolith MCM-71; Zeolith SSZ-53; Zeolith UTD-1
Etylbenzene disproportionation; Zeolite MCM-71; Zeolite SSZ-53; Zeolite UTD-1; n-Decane hydroconversion
GND-Schlagwort:Zeolith ; Zeolith ITQ-21
Fachbereiche / Organisatorische Einheiten:Fachbereich Chemie
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 540 Chemie
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $