A Multi-Sensor Intelligent Assistance System for Driver Status Monitoring and Intention Prediction

Ein multisensorisches intelligentes Assistenzsystem für die Überwachung des Fahrerzustands und die Vorhersage der Fahrerhandlungsabsicht

  • Advanced sensing systems, sophisticated algorithms, and increasing computational resources continuously enhance the advanced driver assistance systems (ADAS). To date, despite that some vehicle based approaches to driver fatigue/drowsiness detection have been realized and deployed, objectively and reliably detecting the fatigue/drowsiness state of driver without compromising driving experience still remains challenging. In general, the choice of input sensorial information is limited in the state-of-the-art work. On the other hand, smart and safe driving, as representative future trends in the automotive industry worldwide, increasingly demands the new dimensional human-vehicle interactions, as well as the associated behavioral and bioinformatical data perception of driver. Thus, the goal of this research work is to investigate the employment of general and custom 3D-CMOS sensing concepts for the driver status monitoring, and to explore the improvement by merging/fusing this information with other salient customized information sources for gaining robustness/reliability. This thesis presents an effective multi-sensor approach with novel features to driver status monitoring and intention prediction aimed at drowsiness detection based on a multi-sensor intelligent assistance system -- DeCaDrive, which is implemented on an integrated soft-computing system with multi-sensing interfaces in a simulated driving environment. Utilizing active illumination, the IR depth camera of the realized system can provide rich facial and body features in 3D in a non-intrusive manner. In addition, steering angle sensor, pulse rate sensor, and embedded impedance spectroscopy sensor are incorporated to aid in the detection/prediction of driver's state and intention. A holistic design methodology for ADAS encompassing both driver- and vehicle-based approaches to driver assistance is discussed in the thesis as well. Multi-sensor data fusion and hierarchical SVM techniques are used in DeCaDrive to facilitate the classification of driver drowsiness levels based on which a warning can be issued in order to prevent possible traffic accidents. The realized DeCaDrive system achieves up to 99.66% classification accuracy on the defined drowsiness levels, and exhibits promising features such as head/eye tracking, blink detection, gaze estimation that can be utilized in human-vehicle interactions. However, the driver's state of "microsleep" can hardly be reflected in the sensor features of the implemented system. General improvements on the sensitivity of sensory components and on the system computation power are required to address this issue. Possible new features and development considerations for DeCaDrive are discussed as well in the thesis aiming to gain market acceptance in the future.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS
Metadaten
Verfasserangaben:Li Li
URN (Permalink):urn:nbn:de:hbz:386-kluedo-45495
ISBN:978-3-95974-041-8
Betreuer:Andreas König
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):16.01.2017
Datum der Erstveröffentlichung:16.01.2017
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:28.09.2016
Datum der Publikation (Server):20.01.2017
Freies Schlagwort / Tag:ADAS; ToF; depth sensing; driver status and intention prediction; drowsiness detection; impedance spectroscopy; sensor fusion
Seitenzahl:XIV, 169
Fachbereiche / Organisatorische Einheiten:Fachbereich Elektrotechnik und Informationstechnik
DDC-Sachgruppen:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 30.07.2015

$Rev: 13581 $