Strömungstopologie und Turbulenzmodellierung der Filmkühlung im Profilvorderkanten- und Seitenwandbereich einer Gasturbine

  • Die Verbesserung der aerodynamischen Komponenten einer Gasturbine lässt nur noch wenig Spielraum zu einer Effizienzsteigerung offen. Eine Erhöhung der maximalen Temperatur des thermodynamischen Prozesses bietet weiteres Potential zur Leistungssteigerung. Diese Maßnahme führt zu Turbineneintrittstemperaturen, die eine thermische Belastung für die Turbinenkomponenten darstellt, welche auch durch moderne Werkstoffe nicht ertragen werden kann. Um einer thermische Ermüdung vorzubeugen kann eine Filmkühlung appliziert werden. Eine Filmkühlung hat zunächst eine Reduktion des thermischen Wirkungsgrades zur Folge. Der benötigte Luftmassenstrom muss daher minimiert werden. Um mit minimalem Luftmassenstrom eine ausreichende Kühlung zu erreichen, ist vor der Auslegung der Filmkühlung die Kenntnis des lokalen Wärmeübergangs in der Turbine notwendig. Dieser wird von der Strömung in der Turbine bestimmt. Insbesondere die entstehenden Wirbelstrukturen verursachen starke Temperaturfluktuationen über den Bauteiloberflächen. Hier ist an erster Stelle das Wirbelsystem im Eckbereich von Schaufeln und Seitenwänden zu nennen. Der Wärmeübergang kann hier um bis zu 300% gegenüber der ungestörten Anströmung erhöht sein. Weiterhin tritt das Wirbelsystem mit der vorhandenen Filmkühlung in Interaktion, was eine Reduzierung der Kühlleistung zur Folge hat. Die experimentelle Evaluierung der lokalen Kühlleistung, bemessen durch die Filmkühleffektivität, ist mit einem hohen Maß an Aufwand verbunden. Eine numerische Bestimmung der Filmkühleffektivität ist eine kostengünstige Alternative, bietet jedoch aufgrund der benötigten Modellierung der Turbulenz und der räumlichen und zeitlichen Diskretisierung zwei Fehlerquellen, deren Einfluss auf das Ergebnis einer Beurteilung bedarf. Mit Turbulenzmodellen niedrigen Modellierungsgrades ist eine Abbildung des instationären Wirbelsystems im Eckbereich in guter Übereinstimmung mit dem Experiment möglich. Diese erfordern ein hohes Maß an Ressourcen. Im Zuge der Notwendigkeit einer Ressourcenersparnis besteht der Wunsch das Wirbelsystem mit Modellen hohen Modellierungsgrades zu bestimmen. In dieser Arbeit wird daher herausgestellt, welchen Anspruch das Wirbelsystem tatsächlich an seine Modellierung stellt. Zu diesem Zweck werden nicht nur verschiedene Turbulenzmodelle variierenden Modellierungsgrades gegenübergestellt, sondern auch der notwendige räumliche und zeitliche Diskretisierungsgrad diskutiert. Die Strömungskonfiguration einer Filmkühlung im Eckbereich vor der Schaufelvorderkante kann als Superposition zweier Strömungskonfigurationen betrachtet werden. Diese sind das Ausblasen von Kühlluft aus einer diskreten Bohrung und die Entwicklung des Wirbelsystems im Eckbereich vor der Vorderkante aufgrund einer Grenzschichtströmung. Zunächst werden die Ansprüche der Einzelkonfigurationen an Turbulenzmodellierung und Diskretisierung geklärt. Anschließend wird die Superposition beider Fälle untersucht. Im Vergleich zeigt sich der Einfluss von Turbulenzmodellierung und Diskretisierung auf die Ergebnisse der Einzelkonfigurationen und weiterhin, ob diese Erkenntnisse auf die Bestimmung der Superposition angewendet werden können. Die Zielgröße der Berechnungen ist die lokale Filmkühleffektivität, beziehungsweise, im Fall der Untersuchung des Wirbelsystems ohne Filmkühlung, der lokale Wärmeübergang in die Seitenwand. Für die drei untersuchten Strömungskonfigurationen stehen experimentelle Daten zur Validierung zur Verfügung. Während das Ausblasen aus einer diskreten Bohrung mit einem RANS Modell, dem k-\epsilon Modell, gut abgebildet werden kann, ist die Entwicklung des Wirbelsystems im Eckbereich vor der Schaufelvorderkante und der damit einhergehende Wärmeübergang durch ein hybrides Modell, das DES Modell, gut repräsentiert. In Verbindung mit dem k-\epsilon Modell zeigt sich für die Untersuchung des Ausblasens eine grobe Diskretisierung bei stationärer Berechnung als förderlich für die Abbildung der experimentellen Filmkühleffektivität. Dies liegt in der vorhandenen numerischen Diffusion begründet. Die Wiedergabe vorhandener Wirbelstrukturen ist essentiell zur Prognose der Filmkühleffektivitätsverteilung und des Wärmeübergangs im Eckbereich vor der Vorderkante. Dies bedarf der Verwendung eines geeigneten Modells in Verbindung mit einer ausreichenden Diskretisierung. Daher zeigt sich hier das DES Modell als geeignet. Die Entwicklung der Filmkühleffektivität im Fall des Ausblasens von Kühlluft in ein bestehendes Wirbelsystem ist von den entstehenden Wirbelstrukturen bestimmt. Die Ergebnisse des DES Modells in Verbindung mit dem Netz größter Knotendichte weisen daher hier die beste Übereinstimmung mit dem Experiment auf.

Download full text files

Export metadata

Metadaten
Author:Rebecca Reviol
URN:urn:nbn:de:hbz:386-kluedo-34207
Advisor:Martin Böhle
Document Type:Doctoral Thesis
Language of publication:German
Date of Publication (online):2013/02/11
Date of first Publication:2013/02/11
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2013/01/25
Date of the Publication (Server):2013/02/12
Tag:CFD; Diskretisierung; Filmkühlung; Hufeisenwirbel; Jet in crossflow; Wärmeübergang
Page Number:XVII, 115, I
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012