A Framework for XML Similarity Joins

  • A prime motivation for using XML to directly represent pieces of information is the ability of supporting ad-hoc or 'schema-later' settings. In such scenarios, modeling data under loose data constraints is essential. Of course, the flexibility of XML comes at a price: the absence of a rigid, regular, and homogeneous structure makes many aspects of data management more challenging. Such malleable data formats can also lead to severe information quality problems, because the risk of storing inconsistent and incorrect data is greatly increased. A prominent example of such problems is the appearance of the so-called fuzzy duplicates, i.e., multiple and non-identical representations of a real-world entity. Similarity joins correlating XML document fragments that are similar can be used as core operators to support the identification of fuzzy duplicates. However, similarity assessment is especially difficult on XML datasets because structure, besides textual information, may exhibit variations in document fragments representing the same real-world entity. Moreover, similarity computation is substantially more expensive for tree-structured objects and, thus, is a serious performance concern. This thesis describes the design and implementation of an effective, flexible, and high-performance XML-based similarity join framework. As main contributions, we present novel structure-conscious similarity functions for XML trees - either considering XML structure in isolation or combined with textual information -, mechanisms to support the selection of relevant information from XML trees and organization of this information into a suitable format for similarity calculation, and efficient algorithms for large-scale identification of similar, set-represented objects. Finally, we validate the applicability of our techniques by integrating our framework into a native XML database management system; in this context we address several issues around the integration of similarity operations into traditional database architectures.
  • Ein Framework für XML Similarity Joins

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Leonardo Andrade Ribeiro
URN (Permalink):urn:nbn:de:hbz:386-kluedo-25429
Betreuer:Theo Härder
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2010
Jahr der Veröffentlichung:2010
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:15.07.2010
Datum der Publikation (Server):16.08.2010
Freies Schlagwort / Tag:Duplikaterkennung; Similarity Join; XDBMS
Duplicate Identification; Similarity Joins; XDBMS
GND-Schlagwort:Algorithmus ; Datenbank ; Leistungsmessung; XML ; Ähnlichkeit
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
CCS-Klassifikation (Informatik):H. Information Systems / H.2 DATABASE MANAGEMENT (E.5)
H. Information Systems / H.3 INFORMATION STORAGE AND RETRIEVAL / H.3.3 Information Search and Retrieval
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 00 Informatik, Wissen, Systeme / 004 Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $