Learning and Clustering Plan Abstractions to Improve Hierarchical Planning

  • Hierachical planning can be improved by explanation-based learning (EBL) of abstract plans from detailed, successfully solved planning problems. Abstract plans, expressed in well-established terms of the domain, serve as useful problem decompositions which can drastically reduce the planning complexity. The learned plan abstraction must be valid for a class of planning cases rather than for a single case, to ensure their successful application in a larger spectrum of new situations. A hierarchical organization of the newly learned knowledge must be archieved to overcome the utility problem in EBL. This paper presents a new formal model of shared plan abstraction and the closely related explanation-based procedure S-PABS. Unlike other apporaches to plan abstraction, our model allows a total different terminology to be introduced at the abstract level. Finally, an unsupervised incremental procedure for constructing a hierachy of shared abstract plans is proposed, as a kind of concept formation over explanations.

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Ralph Bergmann
URN (Permalink):urn:nbn:de:hbz:386-kluedo-1729
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1999
Jahr der Veröffentlichung:1999
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Freies Schlagwort / Tag:Abstraction ; Knowledge Acquisition ; case-based problem solving ; explanation-based learning
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $