Synthese von Steuerprogrammen durch Klassifizierungslernen am Beispiel der Stabilisierungssteuerung von Nachrichtensatelliten

  • Verfahren des Maschinellen Lernens haben heute eine Reife erreicht, die zu ersten erfolgreichen industriellen Anwendungen geführt hat. In der Prozessdiagnose und -steuerung ermöglichen Lernverfahren die Klassifikation und Bewertung von Betriebszuständen, d.h. eine Grobmodellierung eines Prozesses, wenn dieser nicht oder nur teilweise mathematisch beschreibbar ist. Ausserdem gestatten Lernverfahren die automatische Generierung von Klassifizierungsprozeduren, die deterministisch abgearbeitet werden und daher für die Belange der Echtzeitdiagnose und -steuerung u.U. zeiteffektiver als Inferenzmechanismen auf logischer bzw. Produktionsregelbasis sind, da letztere immer mit zeitaufwendigen Suchprozessen verbunden sind.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Wolfgang Müller, Fritz Wysotzki, Christian Brühe
URN (Permalink):urn:nbn:de:hbz:386-kluedo-1549
Dokumentart:Preprint
Sprache der Veröffentlichung:Deutsch
Jahr der Fertigstellung:1999
Jahr der Veröffentlichung:1999
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Freies Schlagwort / Tag:Maschinelles Lernen
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $