Adaptive antennas for mobile radio systems using Time Division CDMA and joint detection

  • At present the standardization of third generation (3G) mobile radio systems is the subject of worldwide research activities. These systems will cope with the market demand for high data rate services and the system requirement for exibility concerning the offered services and the transmission qualities. However, there will be de ciencies with respect to high capacity, if 3G mobile radio systems exclusively use single antennas. Very promising technique developed for increasing the capacity of 3G mobile radio systems the application is adaptive antennas. In this thesis, the benefits of using adaptive antennas are investigated for 3G mobile radio systems based on Time Division CDMA (TD-CDMA), which forms part of the European 3G mobile radio air interface standard adopted by the ETSI, and is intensively studied within the standardization activities towards a worldwide 3G air interface standard directed by the 3GPP (3rd Generation Partnership Project). One of the most important issues related to adaptive antennas is the analysis of the benefits of using adaptive antennas compared to single antennas. In this thesis, these bene ts are explained theoretically and illustrated by computer simulation results for both data detection, which is performed according to the joint detection principle, and channel estimation, which is applied according to the Steiner estimator, in the TD-CDMA uplink. The theoretical explanations are based on well-known solved mathematical problems. The simulation results illustrating the benefits of adaptive antennas are produced by employing a novel simulation concept, which offers a considerable reduction of the simulation time and complexity, as well as increased exibility concerning the use of different system parameters, compared to the existing simulation concepts for TD-CDMA. Furthermore, three novel techniques are presented which can be used in systems with adaptive antennas for additionally improving the system performance compared to single antennas. These techniques concern the problems of code-channel mismatch, of user separation in the spatial domain, and of intercell interference, which, as it is shown in the thesis, play a critical role on the performance of TD-CDMA with adaptive antennas. Finally, a novel approach for illustrating the performance differences between the uplink and downlink of TD-CDMA based mobile radio systems in a straightforward manner is presented. Since a cellular mobile radio system with adaptive antennas is considered, the ultimate goal is the investigation of the overall system efficiency rather than the efficiency of a single link. In this thesis, the efficiency of TD-CDMA is evaluated through its spectrum efficiency and capacity, which are two closely related performance measures for cellular mobile radio systems. Compared to the use of single antennas, the use of adaptive antennas allows impressive improvements of both spectrum efficiency and capacity. Depending on the mobile radio channel model and the user velocity, improvement factors range from six to 10.7 for the spectrum efficiency, and from 6.7 to 12.6 for the spectrum capacity of TD-CDMA. Thus, adaptive antennas constitute a promising technique for capacity increase of future mobile communications systems.
  • Adaptive antennas for mobile radio systems using Time Division CDMA and joint detection

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Apostolos Papathanassiou
URN:urn:nbn:de:bsz:386-kluedo-12573
Advisor:P. W. Baier
Document Type:Doctoral Thesis
Language of publication:English
Year of Completion:2000
Year of first Publication:2000
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2000/06/27
Date of the Publication (Server):2000/08/29
Faculties / Organisational entities:Kaiserslautern - Fachbereich Elektrotechnik und Informationstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011