Modeling of Transient Gasoline Engine Emissions using Data-Driven Modeling Techniques

  • In recent years, the automotive industry has shifted from purely combustion engine-driven vehicles towards hybridization due to the introduction of CO2 emission legislation. Hybrid powertrains also represent an important pillar and starting point in the journey towards zero-emission and full electrification. Fulfilling the most recent emission standards requires efficient control strategies for the engine, capable of real-time operation. Model accuracy is one of the main parameters which directly influence the performance of such control strategies. Specific methodologies developed in the past, such as physically- or phenomenologically-based approaches, have already facilitated the modeling of the combustion engine. Even though these models can accurately predict emissions in steady state conditions, their performance during transient engine operation is time-consuming and still not sufficiently reliable. The major contribution of the current work is to clarify and apply the recent advancements in data-driven modeling techniques, especially in time series forecasting with feedforward neural networks (FFNNs) and long short-term memory networks (LSTMs), to address the limitations mentioned above and to compare the different approaches. The quantity and quality of data are significant challenges for data-driven modeling. This paper studies the modeling of gasoline engine emissions using FFNNs and LSTMs. The data quantity and quality requirements are studied based on a portable emission measurement system (PEMS), measuring at 1 Hz, and additional analyses on an engine test bench with a HiL setup, providing the possibility of increasing the measurement frequency with more sophisticated devices by a factor of five. Subsequently, the training and validation of the FFNNs and LSTMs are outlined, and finally, the model accuracy is discussed.
Metadaten
Verfasser*innenangaben:Ganesh Sundaram, Tobias Gehra, Jonas Ulmen, Mirjan Heubaum, Daniel GörgesORCiD, Michael GünthnerORCiD
URN:urn:nbn:de:hbz:386-kluedo-75520
ISSN:2688-3627
Titel des übergeordneten Werkes (Englisch):SAE Technical Paper
Dokumentart:Wissenschaftlicher Artikel
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):11.04.2023
Jahr der Erstveröffentlichung:2023
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Publikation (Server):29.11.2023
Freies Schlagwort / Tag:Artificial Intelligence; Emission; Hybrid Electric Vehicle; Machine Learning; Simulation
Ausgabe / Heft:2023-01-0374, 2023
Seitenzahl:10
Quelle:10.4271/2023-01-0374
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Sachgruppen:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Lizenz (Deutsch):Zweitveröffentlichung