2023-01-0374

Modeling of Transient Gasoline Engine Emissions using Data-Driven Modeling

Techniques

Ganesh Sundaram, Tobias Gehra, Jonas Ulmen, Mirjan Heubaum, Daniel Gorges, and Michael Giinthner

Abstract

In recent years, the automotive industry has shifted from purely com-
bustion engine-driven vehicles towards hybridization due to the intro-
duction of CO2 emission legislation. Hybrid powertrains also repre-
sent an important pillar and starting point in the journey towards zero-
emission and full electrification. Fulfilling the most recent emission
standards requires efficient control strategies for the engine, capable
of real-time operation. Model accuracy is one of the main parame-
ters which directly influence the performance of such control strate-
gies. Specific methodologies developed in the past, such as physically-
or phenomenologically-based approaches, have already facilitated the
modeling of the combustion engine. Even though these models can ac-
curately predict emissions in steady state conditions, their performance
during transient engine operation is time-consuming and still not suffi-
ciently reliable. The major contribution of the current work is to clar-
ify and apply the recent advancements in data-driven modeling tech-
niques, especially in time series forecasting with feedforward neural
networks (FFNNs) and long short-term memory networks (LSTMs),
to address the limitations mentioned above and to compare the differ-
ent approaches.

The quantity and quality of data are significant challenges for data-
driven modeling. This paper studies the modeling of gasoline engine
emissions using FFNNs and LSTMs. The data quantity and quality
requirements are studied based on a portable emission measurement
system (PEMS), measuring at 1 Hz, and additional analyses on an en-
gine test bench with a HiL setup, providing the possibility of increasing
the measurement frequency with more sophisticated devices by a fac-
tor of five. Subsequently, the training and validation of the FFNNs and
LSTM:s are outlined, and finally, the model accuracy is discussed.

Introduction

Reducing the emissions of both greenhouse gases and pollutants are the
dominating topics of current drivetrain developments for road vehicles.
Both in the United States [1] and the European Union [2], [3] as well
as in most other developed countries of the western world, ambitious
targets for the reduction of CO2 emissions in the transport sector have
been set. Alongside, emission standards for pollutants are also tight-
ened to ultra-low levels, altogether aiming at zero-impact emissions
from road vehicles.

For combustion engine-driven vehicles, massive efforts have been
made in the last two decades to improve both efficiency and pollutant
emissions based on the findings from research activities worldwide.
Part of this research was identifying vehicle operating conditions lead-
ing to increased emissions. One of these areas is low-speed vehicle op-
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eration, including when the vehicle starts from a standstill. The studies
helped to develop appropriate operational strategies to reduce both pol-
lutant and CO2 emissions, e.g., by running the engine at an optimum
load point and by substituting the combustion engine at low vehicle
speeds, e.g., through the use of an electric motor for propulsion. These
insights led to the development of Hybrid Electric Vehicles, commonly
known as HEVs. Hybrid drive systems offer numerous opportunities
to optimize engine operation and to downsize the combustion engine.

Engine load point optimization is a crucial step in improving engine
efficiency and reducing CO> emissions. Based on the characteristic
maps of fuel economy for the corresponding engine, which can be ob-
tained from testbed measurements, strategies for optimal operation can
be developed. Whenever it is identified that the current operating mode
is deviating from the optimal region, various strategies can be applied
to move the engine operation to a more efficient condition. Such de-
viations from the optimal operating point include two directions, thus
both high-load conditions, such as sudden acceleration, and low-load
conditions, such as low-speed driving. In addition to non-optimal fuel
economy, both situations may also cause an increase in pollutant emis-
sions. As an example, strong accelerations entail highly transient op-
erating point changes of the engine, which may favor effects such as
incomplete combustion or high nitrous oxide (NO,) emissions. On the
other side, extensive low-load operation typically results in a decrease
in exhaust gas temperature, which might fall below the conversion limit
temperature of the exhaust gas after-treatment system (EGA), result-
ing in a deterioration of tailpipe emissions. Both situations must be
avoided to improve real-world pollutant emissions and comply with
current and future emission standards.

In order to assess the emission level and fuel economy of vehicles in
realistic operation, various driving cycles have been developed for the
assessment on roller dynamometers, serving as a standard metric for
type approval. In Europe, the Worldwide Harmonized Light Duty Ve-
hicle Test Procedure (WLTP) and the associated Worldwide Harmo-
nized Light Duty Vehicle Test Cycle (WLTC) was introduced in the
year 2017, aiming at more realistic driving conditions than the previ-
ously used New European Driving Cycle (NEDC). As a further step,
European emission legislation today also requires assessing pollutant
emissions in real-world operations on the road corresponding to the
Real Driving Emissions legislation (RDE). These developments further
increase the requirements for operational strategies to control the entire
drivetrain. In this context, the performance of the engine and drivetrain
control system depends heavily on how well the emission dynamics of
the engine are understood and transferred into a model to be used in the
operational strategy. However, modeling engine emissions is subject to
various challenges, as will be discussed in the upcoming sections.

In recent years, various projects have been carried out in Machine



Learning-based modeling of engine processes for application in the
powertrain control unit. Most of these projects have focused on par-
tial aspects of engine control requirements (e.g., lambda control [4] or
EGR control [5]) or the realization of an efficiency-optimized hybrid
operating strategy, but without consideration of pollutant emissions [6],
[7], [8]. Other works address modeling for engine emissions and fuel
consumption using machine learning methods, but without the objec-
tive of an application to engine control [9]. In contrast, the present
work aims at making the transient pollutant formation in real road op-
eration describable and applicable as a control variable for engine con-
trol.

Problem Definition

The vital contribution of the operational strategy in a hybrid electric
vehicle is the efficient load distribution corresponding to the torque re-
quested by the driver. The electric motor generally shifts the combus-
tion engine to its optimal (or at least a more efficient) operating point.
Usually, this optimum is understood as the most efficient engine opera-
tion. However, considering the high requirements concerning pollutant
emissions, this choice can no longer be taken without considering the
impact on tailpipe emission quality. This approach implies that the
operational strategy should already have an emission model included
by which it can predict how the emission parameters propagate from
the current state. Modeling emissions involves various challenges. As
a first classification, exhaust emissions can be divided into two major
categories: during steady-state and during transient operation. Emis-
sion models must include both of these operating modes. To optimize
tailpipe emissions, future operating strategies will require real-time
prediction of pollutant formation and the various factors influencing
exhaust gas after-treatment. For this purpose, it is also beneficial to ap-
ply additional sensors in the exhaust system or to analyze the existing
raw data with modern evaluation methods to provide new information
to the higher-level models or diagnostics, as presented, for example, in
[10].

Steady-State Operation

Whenever the vehicle is moving at a constant speed, and a consistent
load, the Engine Control Units (ECU) have ample time to set the pa-
rameters influencing emissions, such as ignition timing, valve timing,
and lambda (the air-fuel ratio) to optimum values to make the com-
bustion process as complete as possible. This measure has a positive
effect on raw emissions. As an additional advantage, the steady-state
operation of an internal combustion engine is easier to model when
compared to the transient conditions, as the engine behavior during
this condition can be described physically and phenomenologically.
This has been a proven standard in recent years. However, it is time-
consuming due to the difficulty of obtaining the parameters required
for customizing the existing emissions for the respective application.
Generally, the combustion quality inside the engine, which decisively
influences the emission level, can be described and determined through
a heat release analysis. For this purpose, transient measurements of
pressure at three points inside the engine are required — the pressure
in the intake duct, inside the engine cylinder, and in the exhaust man-
ifold — which is why this approach is sometimes also referred to as
“three-pressure analysis” (TPA). The heat release curve obtained for
a particular engine operating point provides ample information on the
combustion process. In further steps, a combustion model may be de-
rived and optimized from these known combustion characteristics, pro-
viding the required data for the emission models.

Transient Operation

The operation of an internal combustion engine in a transient or
highly dynamic condition differs fundamentally from the steady-state
or quasi-steady-state conditions. The essential fact in the steady-state
operation that the operating points remain the same for a consider-
able time is violated here. The ECUs cannot set optimum parame-
ters for these situations as the operating points change continuously

and rapidly. Additionally, the inertia of the systems also plays a
role here, especially in the form of phenomenons such as boost pres-
sure buildup. Even modern engines struggle to support these step-
less calibration requirements to avoid such non-optimal conditions, re-
sulting in emission peaks in transient operation. Unfortunately, the
physically/phenomenologically describable processes mentioned with
steady-state emission modeling overlap for every operational point and
increase the uncertainty when used to model the transients. The pres-
sure analysis method fails as the intermediate states will be passed in
short intervals from point A to point B during an operation. A pos-
sible solution to the problem is building steady-state sectional areas
within a single transient operation; however, this subdivided approach
would cost considerable computational effort. Adding to the existing
overheads, it is also fundamentally impossible to measure, analyze and
optimize all operating points during transient conditions. Due to this,
these situations are better handled with interpolation techniques rather
than an arbitrary change of operating point in transient operation.

Operation Strategy Development

More knowledge regarding the emission dynamics and operating en-
vironment parameters thoroughly aids the development of operational
strategies for HEVs. With new intelligent onboard systems, acquir-
ing information such as driver behavioral patterns, route prediction,
and diagnostics is much easier. As mentioned in the previous section,
obtaining steady-state emission models is possible. The major chal-
lenge exists in modeling engine emissions during transient operating
conditions. Developing an ideal operational strategy that assures the
lowest potential emissions during real-world vehicle operation on the
road is only achievable when these critical pieces of information are
combined.

This work mainly focuses on exploring the possibilities of understand-
ing the transient emission modeling process and building an emission
model for a particular engine. The newly developed models aim to be
compatible with a controller deciding on the operational strategy which
takes action to avoid excessive pollutant emissions in critical driving
maneuvers. The entire setup should ideally be real-time capable and
respect the driver’s demands. As pollutant formation is an extraordi-
narily complex process - even though it can be described relatively well
in steady-state conditions - its dynamics in transients are challenging
to capture mathematically. Hence, the possibilities of data-driven mod-
eling will be explored in depth. The data-driven model should ideally
help in the real-time detection and prediction of pollutant formation,
which will be used inside the operational strategy. The modeling ap-
proaches will be explained in detail in the upcoming sections.

State of the Art

Emission Models

In recent works, various emission models have been presented, which
describe the formation and prediction of the emission components.
These models are mainly divided into two subcategories: physical and
data-driven models.

Physical modeling techniques comprehend how each gaseous compo-
nent reacts during combustion individually and identifies which com-
bustion models can represent them. These combustion models calcu-
late the substantial, non-measurable quantities, such as the partitioning
and the state quantities of the burned and unburned zone. Such models
have been developed by Pischinger et al. [11] and Merker et al. [12] for
example. They divide combustion models into three categories: ther-
modynamic (0-dimensional), phenomenological (quasi-dimensional),
and multi-dimensional models. These models differ in their complex-
ity. The model selection depends upon the emission species that are
of interest. For example, in Esposito et al. [13], the carbon monox-
ide model used is based on Cai et al. [14] and employs the reduced
fuel oxidation mechanism utilizing a 0D-1D combustion model. The
data-driven emission models are explained in more detail below.



Emission Measurement Systems

This section briefly introduces the underlying measurement and test
bench systems. Additionally, their capabilities and limitations are also
explored. These devices can be classified into portable and stationary
measuring devices.

PEMS: The portable emission measurement systems (PEMS) are
specifically designed for operation on the complete vehicle in real road
traffic and allow an analysis according to the legally required standards.
For this purpose, they are usually mounted on the vehicle’s trailer cou-
pling, and the exhaust gas is discharged directly at the rear silencer.
In addition to gaseous and particle emissions analyzers, these devices
have an exhaust flow meter to measure the exhaust gas mass flow and
a GPS to track the route, especially the altitude profile. The measure-
ment device requires a host computer recording the vehicle’s OBD val-
ues. In terms of design, the devices available on the market may differ.
However, the features mentioned above are standard and can be found
on all PEMS devices as a standard feature. Due to the physical limi-
tations, these devices are usually designed for a minimum acquisition
rate of 1 Hz and are limited for high dynamics emission measurements
which require higher frequency [15].

Stationary Measurement System: The major limitations of PEMS
are their form factor and frequency. These factors do not constrain
stationary measuring devices used in laboratories or test facilities. As
they are not required to be mobile, they can be built larger and heavier
if needed. This flexibility allows the integration of more sensitive and
sophisticated analyzers. Additionally, probe mounting points could be
varied, allowing the ability to decide the measurement location. This
capability becomes handier when unique measurements like raw emis-
sions (directly after leaving the combustion chamber) have to be made.
Furthermore, the measurement system is modular and can be replaced
depending on the requirement. More advanced measurement systems
provide higher data collection frequency.

Experimental Setup

Test Vehicle and Test Bench

As the primary goal of this work is to develop a model for transient
operating conditions, and the physics-based modeling techniques were
already identified, the data-driven modeling technique becomes the go-
to solution. The general character of a transient operation in a vehicle
is being short in time intervals. This nature demands high-frequency
data collection to catch the internal dynamics entirely in the model.
A BMW 530e test vehicle and its equivalent engine on the test bench
have been set up to provide the possibility of interdisciplinary tests
and measurements comprising real-world operation and HiL tests. The
first objective of the test bench setup was to derive real-world real-
istic load cycles and their corresponding RDE cycles. These profiles
will later be assigned as the test bench’s base profiles. The test vehi-
cle was equipped with a PEMS to capture emission data for various
speed-torque profiles. One such profile is shown in Fig. 1. For all
of these evaluations, AVL Concerto and Matlab have been used as ef-
ficient tools for the automation of evaluation procedures and for the
visualization of test results.

As a starting point for emission modeling and test bench setup, the
PEMS data provides comprehensive insight and reference data, par-
ticularly on the emission-critical operating ranges of the combustion
engine. However, these measurements could not be directly used for
data-driven modeling because of their lower data point frequency. Ad-
ditionally, the PEMS measurements are taken from the exhaust sys-
tem’s tailpipe after the exhaust gas treatment system, whereas in this
work, more importance is placed on providing an emission model for
the output from the combustion chamber, which is usually designated
as raw emission. Hence, measurements taken in front of the exhaust
gas after-treatment system were considered. To further improve com-
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Figure 1: Speed-torque profile acquired during real driving tests.

parability between the test vehicle and the test bench, the same BMW
B48 type engine was installed on the test bench. The engine parameters
are detailed in Table 1.

Table 1: Technical details of the BMW B48 test engine.

Engine Parameters Value Unit
Maximum Power 135 kW
Maximum Torque 290 Nm
Displacement 1.998 dm?®
Compression Ratio 11.0 -
Bore 82.0 mm
Stroke 94.6 mm

As data-driven modeling ideally requires data containing all the dom-
inant dynamics inside the system, conducting such complex experi-
ments on an actual test vehicle could be challenging. Additionally,
a measurement system with a higher frequency might have mounting
space constraints on the vehicle. These limitations could be eliminated
with the test bench. Various sophisticated measurement systems can
be used for emission measurement, and complex driving profiles can
be performed at the test bench as it is operated in a controlled environ-
ment. The current test bench setup is highly dynamic and automated,
with an electric machine as the load unit and the engine control unit
completely open, allowing access to all desired parameters while en-
suring a fault-free combustion engine operation. The engine is also
equipped with both in-cylinder and low-pressure (intake/exhaust) pres-
sure indication, ensuring component safety and providing data for fur-
ther investigations.

The raw emissions are sampled directly downstream of the tur-
bocharger (Fig. 2), as it can be assumed that the exhaust gas is well
mixed at this point. Due to the twin-scroll system, this is also the first
possible sampling point at which the influence of all cylinders can be
observed. The partial flow is transported to the emission-measuring
device through a heated line. The measuring device analyzes the ex-
haust gas according to the principle of Fourier transform infrared spec-
troscopy. In order to analyze THC and O», additional modules are
also integrated in the same system. The measurement system allows
precise emission analysis at a frequency of 5 Hz - five times the reso-
lution compared with on-road tests with PEMS. Additionally, the fast
response feature in the measurement system improves the dynamic be-
havior.

Fig. 3 shows a schematic of the complete test bench set up with the
engine, the electric machine used as the load, and the central measure-
ment equipment. Standard equipment, such as temperature and pres-
sure measuring points, are omitted to reduce the figure complexity.

Modeling Methodology

In this section, we utilize data-driven techniques to gain insights into
the transient emission behavior of an HEV. Firstly, we highlight the



Figure 2: Test bench setup - raw emissions are sampled between the tur-
bocharger and catalytic converter - red arrow.
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Figure 3: Schematic representation of the test bench setup.

most important interrelationships between the different measurements,
and secondly, different methods are used to derive a data-driven model
of the emission system.

Data Generation and Acquisition/ Experiment Design

As a data-driven model’s quality depends on the data quality used for
its training, it is crucial to obtain measurements that yield maximum
information [16] from the system. The model quality is defined as how
well the intrinsic dynamics of the system are captured and how explic-
itly they are differentiated. Hence, generating and recording data for
all the system’s dynamics is ideal. Therefore, it is essential to design
trajectories that persistently excite the system at hand.

The initial focus in the dataset generation was put on the replication
of the profiles initially done on the test vehicle BMW 530e during
the PEMS analysis. Specific real-world driving profiles are used for
this purpose which had load-speed profiles of various 90-minute RDE-
compliant drives, with a roughly equal ratio between city, interurban,
and highway driving. Distinctive driving profiles, which generally
are outside the legally compliant accelerations, were also conducted.
These unique longitudinal dynamics help to understand dynamic load-
changing scenarios. In addition to the available OBD signals, the val-
ues determined by the PEMS (emissions, GPS, and temperatures) were
also recorded. However, it was concluded that sticking to those profiles
only captures particular dynamics rather than the full emission dynam-
ics of the engine. Hence the techniques from classical system identifi-
cation are also investigated. Literature refers to trajectory models that

are spline-variants [17] or variants of periodic excitation [16, 18, 19],
which could better touch the most of the dynamics spectrum. Among
them, the popular model is the Fourier series, which is given for the
measurement j as follows:

S e oy )
zi(t) = Z ap sin(wy’ kt) — w}j)k cos(wy kt) | +cj0 (1)

)

The fundamental frequency w}j of measurement j can be chosen to

be equal for all measurements (=: wy ), to ensure periodicity. a,(cj ) and

b;j ) are the amplitudes for the 1 . . . K harmonic terms. c;,o is the offset
and the trajectory evolves along time ¢.

As a rule of thumb, the conventional system identification literature
suggests creating a trajectory with a sufficient number of sinusoids
[20]. The parameters ag ), b,(j ) and ¢;,0 should be determined to max-
imize the information content of the measurement time series. The
book written by Khalil and Dombre [21] describes various criteria that
can be chosen for selecting these parameters. However, only some of
those criteria can be used for formulating black-box models. Finally,
it was decided to produce multiple trajectories covering most of the
measurement space, featuring many sine and cosine terms. This can be
achieved using the following optimization problem:

argmax (H(v) + A(v))
v (@)
st xip < x(t) < xup YVt € [0,T].

The vector v summarizes the Fourier coefficients [a, b, co]”. The
function H(v) is a measurement of the dissimilarity of the Fourier
coefficients, e.g., minimizing the correlation between them. In con-
trast, the function A(v) consists of a weighted sum of the 1-norm and
2-norm of v to ensure that the coefficients become non-zero. The con-
straints X1p and Xyub are the bounds for possible measurements. With
different starting values for v, presumably rich trajectories can be ob-
tained.

Fig. 4 shows the final trajectories obtained for both engine rpm and
throttle position. They feature 50 Fourier coefficients to parameterize
a curve for both throttle pedal position and reference rpm. For the 30
minutes of data, the duration of one cycle is set to five minutes and
repeated five times. The repetitions extend the data and mitigate the
noise effect since each trajectory part is performed multiple times with
a fundamental frequency set to wy = 27/600s.
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Figure 4: Fourier series trajectory.
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Figure 5: Measured emission during the RDE profile (scaled to fit).

The objective function term H(v) was set to 5 - var(v), and A(v) =
0.1]|v|l1 4+ 0.002||v]|2. The throttle pedal position is kept between
15% and 80% with rpm between 800 min~—* and 3500 min~'. A sam-
ple measurement of emission recorded for 500 seconds with those tra-
jectories can be seen in Fig. 5.

Data Processing

With the current configuration of the measurement and automation sys-
tem from AVL PUMA, more than 80 parameters are recorded and col-
lected in the dataset. However, not all of these measured parameters
can directly be used for data-based modeling as this would exponen-
tially increase the complexity and computational requirement. More-
over, some parameters might not even bring significant contributions
to the model. These parameters, therefore, have to be filtered out, so
various data preprocessing steps are done before the final data is used
for modeling.

Correlation Analysis: At first, the significant emission outputs, which
are detectable with the existing measurement technology, are identi-
fied. These included CO, CO2, NO, NO5, THC, and NO, and have to
be the output from the data-driven model. Other parameters contribut-
ing to changes in these emission values must be determined here. Cor-
relation matrices are used for this analysis. A correlation matrix cal-
culates the relationship between each column in the dataset and maps
its intensity of it from a negative one to a positive one. A negative cor-
relation value shows how deeply each parameter is inversely related,
and a positive correlation value shows how much they are Tproportional
to each other. For the dataset X = [X1,Xo,...,Xy]", where X;
are vectors consisting of the time series data of measurement 7, we can
build the correlation matrix as

1 pi2 ... pin
P21 L pan Cov(X;, X
P=| . . . 7/)1']':—( ) NG))
: S Var(X;) Var(X;;)
Pnl  Pn2 ... 1

Shifting Data: Previous experience shows that some parameters have
a direct temporal influence on emissions. This can be observed, for
example, with increased load and thus increased temperature of nitro-
gen oxides. Due to the spatial separation of the exhaust gas measuring
system from the object under investigation, a temporal distortion in the
correlation must be assumed. The correlation analysis showed an im-
provement in the correlation values with time-lagged input. A detailed
investigation revealed that the gas travel time from the combustion en-
gine to the measuring device takes several seconds and is, therefore,
not instantaneous. Consequently, the entire dataset is time-shifted to
improve its correlation. Later in the result analysis, it is also observed
that this shifting improved the modeling accuracy. The next step was
to quantify the time shift required. A separate measurement program
based on defined torque ramps, as shown in Fig. 6, is used for the es-
timation purpose. The results are filtered with positive load sequences

and torque values as input. The choice of torque as input avoids the
uncertainties that the engine speed might bring about.
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Figure 6: Ramp program to validate gas travel time - band cursor indicates
signal delay.

The output measurements are then advanced in every discrete step, and
the corresponding correlation value is calculated and plotted. One such
sample could be seen for NO,, in Fig. 7. The final shift value (7) is
estimated with

Testimated = argmax (Corr(7)) “4)
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Figure 7: Time-shifted correlation analysis on NO;.
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Figure 8: Correlation heat map obtained after data shifting.

Finally, a time-shifted correlation heat map, shown in Fig. 8 is ob-
tained. This excerpt shows only a part of the parameters considered for
modeling in this work.

Data-Driven Modeling

Most modern control and estimation techniques require mathematical
models to obtain future predictions. A time-discrete dynamical system



in state space representation is denoted by

Tht1 = [ (zh, ur) )

which is fundamentally a one-step prediction model. If the function
f(xk, uk) is applied recursively

epr = O (f(Tfl) ( o (azk,uk))) 6)

we obtain a T-step prediction of our system. The function f(zx, ux)
might be derived analytically (white box), using data-driven techniques
(black box), or by a mixture of both (grey box). In this paper, we focus
on black-box techniques to find a model of the form

y+e=1Fp(x), @)

where the desired model F(-) maps the input vector x to the output
vector y as accurate as possible. This can be achieved by varying the
parameters [3 so that the error € is minimized, which can be stated as
the regression problem

argglin = |Fs (x) -yl (8)

that can be approached through the use of conventional machine learn-
ing as well as deep learning. Note that both (9) and (6) can be modeled
in the form of (7).

Nonlinear AutoRegression with eXogenous (NARX) models

Autoregressive functions try to model a predictive function using p past
input values

Th+1 = f ('I:]ﬁxk—la <oy Th—py Uk, Uk—15 - - - 7uk'—10)7 (9)

where the arguments are the exogenous inputs u,; and the internal states
x;. The function f(-) can be modeled using the following approaches.

1) Random Forest Regression: Originating from a root node, deci-
sion tree learning looks for optimal top-down data partitioning into
subsets (branches). The most distal nodes (leaves) are the outputs of
these models. Random Forest Algorithms generate an ensemble of de-
cision trees to allow for more representation power and prevent over-
fitting, which might happen when polling only from a single decision
tree [22].

2) XGBoost Regression (XGB): The XGB algorithm recently came
into the limelight with its efficient implementation and capability to
combine various weak learning models to create a model with better
accuracy. It belongs to the gradient-boosting family of algorithms that
use tree ensemble base learners to generate different branches and vari-
ous learners. Initially, each learner is equally treated. However, in each
iteration, the weak classifier observations are weighed higher than the
ones from the robust classifiers. In general, machine learning algo-
rithms use random guessing, especially in the initial stages of learning.
Tree ensemble-based algorithms consider that weak learners are much
better than random guessing. XGBoost not only adapts this technique
but also ensures that the weak learners are less commonly used as the
iteration progresses.

3) Support Vector Regression (SVR): In ordinary regressions, the
main objective is to reduce the error sum in the deviation between
the predicted and actual value W. Additionally, penalty parameters
are introduced as Lasso, Ridge, and ElasticNet techniques to reduce
the number of feature parameters used for the modeling. However, an
SVR’s main objective is shifted to reducing the regression model’s co-
efficient values. Generally, the /2-norm of the coefficient vector is used
for this purpose. A bound for the absolute error € (epsilon) is set prior
and lets the objective function find hyperplanes in higher dimensions
to fit the data. The problem can be stated as

(1 > N
min (2 Wi +CZI&> (10)

i=1
st |y —wims] < e+ e,

where w; is the coefficient, and z; is the predictor. An error value
deviation margin ¢ is also added to relax the constraint and avoid non-
solvable situations.

Multi-Layer Perceptrons

Artificial neural networks are sets of connected computing nodes called
artificial neurons. Typically, these nodes are clustered into layers. The
most simplistic artificial neural network architecture is called multi-
layer perceptron and is built by multiple layers, including an input
layer, hidden layers, and an output layer [23]. All units from adja-
cent layers are connected. This is described by N chained, nonlinear
functions

y= I (0 (1 60) (11

where (3; consists of the weights W,T and biases b; of each - so-called
- a layer of the network. Every layer performs a transformation

£ =g(Wi hiiy +by), (12)

where g(-) is a nonlinear activation function and h;_; is the output of
the previous layer [24].

Long Short-Term Memory Neural Networks

The application of feedforward neural networks, including MLPs, is
limited to static classification and regression tasks. In contrast, Recur-
rent Neural Networks (RNNs) have an internal state, making them a
dynamic system. There can be feedback connections between higher
and lower layers and self-feedback of neurons, allowing data from ear-
lier processing steps to influence the current step. In that way, a mem-
ory of time series events is generated. However, RNNs can only learn
short time series because they face the problem of vanishing or explod-
ing errors [25]. Long Short-Term Memory Neural Networks (LSTMs)
extend RNNs by gating units that switch specific flows of information
on and off [24], leading to the ability to learn up to more than 1,000
steps [25]. Featuring these properties, LSTMs are amongst the most
commonly used elements for time series predictions.

Results and Discussion

In the evaluation stage, the initial focus was given to the correlation ma-
trix ( Fig. 8) and its reliability. For this purpose, a plot with the input
torque (in Nm) and the engine speed (in rpm) against each pollutant
is obtained to verify the assumed correlations. Such a plot obtained
for NO, can be seen in Fig. 9. The positive correlation (value = 0.68)
can be qualitatively confirmed from the figure as an increase in torque
leads to a rise in the NO,, concentration as well. In the choice of input
parameters, the primary goal was to utilize easily measurable variables,
which are also simple to predetermine in the subsequent optimization
of the operating strategy and yet have a good correlation with the out-
put variables. Thus, the engine speed and air-fuel ratio were selected
in addition to the torque. These parameters allow a good comparison
of the following modeling approaches, whereby the best approach can
be extended in complexity.

All models are trained and validated on a dataset consisting of sev-
eral RDE measurements, followed by a Fourier series profile obtained
to solve the optimization problem (2). The test dataset is another 15-
minute RDE profile with highly dynamic transients, shown in Figure
10. It has to be mentioned that this data has not been part of the train-
ing data. The test data is very dynamic regarding the speed signal with
various up- and downshifts and the torque demand. Lambda is usually
very close to 1 for the engine under study and typically ranges from
0.95 to 1.05. The training data is first normalized with the min-max
scalar technique and split for training and validation. Ideal hyperpa-
rameters are essential for model accuracy, but finding them can only be
done with heuristics. A parameter sweep technique was implemented
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Figure 9: Measured RDE profile with NO,;.

T T

2k (—Torque (Nm) [1:100]

[—Engine Speed (rpm) [1:1000]|
Air-Fuel Ratio [1:1]

T T
! [}/\ |
0.5 L’.l: -
i 1 I 1 1 1 L 1
100 200 300 400 500 600 700 800
Time [s]

Measurement (Scaled)
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profile.

on the university ‘s high-performance computer for this purpose. All
following graphs and error measures refer to the test data set.

Table 2 summarizes the chosen models and the corresponding hyper-
parameter choices. The NARX models create a unique model for each
pollutant, whereas the neural network models predict multiple outputs
for the corresponding input matrix. The inputs to the neural network
models are only the exogenous input time series. However, the NARX
models require not only the exogenous inputs but also the past internal
states. These previous state requirements are satisfied with the ground
truth data. The RMSE (Root Mean Squared Error) between the related
model predictions and the test data time series is used as a comparison
metric. Each NARX approach consists of multiple submodels of pol-
lutants, so their average RMSE is chosen as the final RMSE. Figures
11 and 12 show the prediction performance of the feedforward neu-
ral network, LSTM network, and the NARX models against the actual
emission output.

The LSTM model performed better than the FFNN model within the
neural networks. The RMSE value is approximately 10 percent lower.
This capability comes from the model characteristics itself. The FFNN
model receives specific inputs at a single time step and tries to model
the output regardless of the previous time steps. Hence, in steady-state
conditions, FFNN models can be beneficial. However, this practice
becomes a restriction during transient engine operation and emission
prediction, as the torque and speed gradients significantly influence the
engine’s emission behavior. In these situations, LSTMs perform better
than FFNNSs as they consider the effects of earlier step data for the
current step. Looking at the different emission components, there are
differences in the performance of the models. For example, FFN and
LSTM models estimate the NO emissions reasonably well, whereas,
for THC, the FFN model performs significantly worse than the LSTM
model.

The NARX models generally approximate the emissions well and cap-
ture the dynamics of all emission types. Comparing the NARX models
with the neural networks concerning the RMSE value, it is noticeable
that the values of the neural networks are 5 to 7 times higher. Among
the NARX models, XGBoost and Random Forest regressions exag-
gerate the dynamics at some spikes. Qualitatively, the support vector
regression approximates the dynamics best. The NARX models are

more sample efficient and can produce better results on the small train-
ing data set. In this study, it is assumed that the ground truth of the in-
ternal states Ty, Tr—1,...,Tx—p are accessible to produce a one-step
prediction z1. In practical scenarios, for example model-based con-
trol applications, the individual pollutants would need to be measured
online, which is likely non-feasible. Additionally, it is found that the
FFNN and LSTM models suffer from the size of the training data set,
even though the results are comparable even for vastly different hy-
perparameters. For further studies, the NARX models have the highest
potential to be considered accurate enough to model the transient emis-
sion behavior of engines for advanced control applications.

Conclusion

In this paper, data-driven modeling of emissions from gasoline engines
under transient operation was presented with both conventional ma-
chine learning and deep learning methods. The focus was primarily
on the methodology and comparison of the different approaches. The
real-world driving profiles were collected from a test vehicle and then
repeated on a transient engine test bench. The data collected from var-
ious such profiles were used for training the models. It was concluded
that the non-linear auto-regression models have a significant advan-
tage and perform better than the deep learning models, improving the
RMSE by [almost] a factor of ten. Not surprisingly, stateful models
considering the influence of past time steps, like NARX and LSTMs,
are superior to feedforward networks when predicting transient emis-
sions. Despite the small dataset and the use of just three fundamental
input parameters — torque, speed, and lambda — the models could
deliver good qualitative performance and accurate quantitative results
except for a few situations. These results provide an excellent intu-
ition regarding the creation of emission formation models which can
be used to optimize the operating strategy. In this respect, an increase
in the dataset size and the choice of additional input parameters should
lead to better results in the prediction quality.

Outlook

Regarding measurement technology, two approaches in the present in-
vestigations offer optimization potential for future data-based emis-
sions modeling, especially in transient operation. The current 5 Hz
measurement system - even though it can approximate the primary
dynamic processes - results in specific dynamics inevitably getting
smoothed out and never reaching the actual emission peaks in the mea-
surement dataset. If models are built on these datasets, the smoothing
of these spikes might reduce the efficiency of the operating strategy
with respect to avoiding emissions.

Furthermore, the spatial separation of the emission measurement de-
vice and the measurement location could be improved in the current
setup. As discussed earlier, the gas transit time is necessary to cor-
rect the measurement data to compensate for the time discrepancy. It
is challenging to find a robust methodological solution to obtain this
value. Additionally, further mixing of the measurement gas or subse-
quent reactions in the heated line to the measurement system cannot
be excluded. Therefore, in further investigations, a laser-based mea-
surement system will be used to analyze the exhaust gas in the process
(in situ) without a significant time delay and with an elevated measure-
ment frequency of up to 1 kHz. For the reasons mentioned above, this
should improve the data-based methods and provide new insights into
the transient emission formation in the present experimental setup.

Another potential area of further study is the search for suitable input
parameters which could significantly improve the quality of the mod-
els. In addition to the selected parameters, other parameters can be
measured directly or entered as maps. It would also be possible to use
variables originating from physical modeling and extend the black box
model to a grey box model. Values characterizing the conditions in the
combustion chamber during transient operation, such as pressure gra-
dients or the residual gas content, would be interesting for this purpose.



Table 2: Modeling methods and respective root mean squared errors. For each method, the best configuration of hyperparameters was determined by a parameter sweep.
The hyperparameter ranges used during the parameter sweep, the best configurations, and the corresponding root means square errors are included. The final model
configuration chosen is highlighted by underlining the corresponding parameter value.

Model RMSE Varied Parameters (best configuration is underlined)
(Best)

Non-linear Auto-regression

o Random Forest 0.0029 Estimators: [20, 30, 50, 100], Regression Order: [2, 3, 6]
o XGBRegressor 0.0023 Estimators: [20, 30, 50, 100], Regression Order: [2, 3, 6]
e SVR 0.0021 Kernal (gamma) : [0.001, 0.01, 0.05], Regularization (C): [0.1, 1, 100], Training
loss penalty factor (epsilon): [0.001, 0.01, 0.03]
Deep Learning Models
e Feedfoward-NN 0.0168 Fully connected layers: [4, 10, 16]; Nodes: [200, 300, 400]; Circulating learning
rate scheduling; All resulting RMSE were in similiar range.
o LSTM-NN 0.0152 LSTM layers [1, 2, 4, 8]; Nodes: [4, 8, 16, 32]; Circulating learning rate scheduling;
All resulting RMSE were in similiar range.
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Figure 11: Emission prediction results with LSTM and FFNN. All pollutants are drawn on a unitless and normalized scale between 0 and 1.
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Figure 12: Emission prediction results with Random Forest, XGBoost, and SVR. All pollutants are drawn on a unitless and normalized scale between 0 and 1.
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