Deep Learning-based Head Orientation and Gender Estimation from Face Image

  • Faces deliver invaluable information about people. Machine-based perception can be of a great benefit in extracting that underlying information in face images if the problem is properly modeled. Classical image processing algorithms may fail to handle the diverse data available today due to several challenges related to varying capturing locations, and conditions. Advanced machine learning methods and algorithms are now highly beneficial due to the rapid development of powerful hardware, enabling feasible advanced solutions based on data learning and summarization into powerful models. In this thesis, novel solutions are provided to the problems of head orientation estimation and gender prediction. Initially, classical machine learning algorithms were used to address head orientation estimation but were limited by their inability to handle large datasets and poor generalization. To overcome these challenges, a new highly accurate head pose dataset was acquired to tackle the identified problems. Novel trained deep neural networks have been exploited, that use the acquired data and provide novel architectures. The information about head pose is then represented in the network weights, thus, allowing predicting the head orientation angles given a new unseen face. The acquired dataset, named AutoPOSE opens the door for further studies in the field of computer vision and especially, face analysis. The problem of gender prediction has also been explored, but unlike humans who can easily identify gender from a face, computers face difficulties due to facial similarities. Therefore, hand-crafted features are not effective for generalization. To address this, a new deep learning method was developed and evaluated on multiple public datasets, with identified challenges in both still images and videos addressed. Finally, the effect of facial appearance changes due to head orientation variation has been investigated on gender prediction accuracy. A novel orientation-guided feature maps recalibration method is presented, that significantly increased the accuracy of gender prediction. In conclusion, two problems have been addressed in this thesis, independently and joined together. Existing methods have been enhanced with intelligent pre-processing methods and new approaches have been introduced to tackle existing challenges, that arise from pose, illumination, and occlusion variations. The proposed methods have been extensively evaluated, showing that head orientation and gender prediction can be estimated with high accuracy using machine learning-based methods. Also, the evaluations showed that the use of head orientation information consistently improved the gender prediction accuracy. Scientific contributions have been presented, and the new acquired highly accurate dataset motivates the research community to push the state-of-the-art forward.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Mohamed Selim
URN:urn:nbn:de:hbz:386-kluedo-72613
DOI:https://doi.org/10.26204/KLUEDO/7261
Betreuer*in:Didier Stricker
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):02.05.2023
Jahr der Erstveröffentlichung:2023
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Titel verleihende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Annahme der Abschlussarbeit:27.10.2022
Datum der Publikation (Server):03.05.2023
Seitenzahl:153
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Informatik
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)