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This PhD thesis aims at finding a global robot navigation
strategy for rugged off-road terrain which is robust
against inaccurate self-localization, scalable to large en-
vironments, but also cost-efficient, e.g. able to generate
navigation paths which optimize a cost measure closely
related to terrain traversability.

In order to meet this goal, aspects of both metrical
and topological navigation techniques are combined. A
primarily topological map is extended with the previously
lacking capability of cost-efficient path planning and
map extension. Further innovations include a multi-
dimensional cost measure for topological edges, a method
to learn these costs based on live feedback from the
robot and a set of extrapolation methods to predict the
traversability costs for untraversed edges. The thesis
presents two sophisticated new image analysis techniques
to optimize cost prediction based on the shape and
appearance of surrounding terrain.

Experimental results indicate that the proposed global
navigation system is indeed able to perform cost-efficient,
large scale path planning. At the same time, the need to
maintain a fine-grained, global world model which would
reduce the scalability of the approach is avoided.
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Abstract

This thesis addresses the problem of finding a global robot navigation strategy for rugged
off-road terrain which is robust against inaccurate self-localization and scalable to large
environments, but also cost-efficient, e.g. able to generate navigation paths which optimize
a cost measure closely related to terrain traversability.

A novel navigation methodology is proposed to meet this goal. The approach combines
aspects of both metrical and topological techniques in order to exploit the strengths of
both classes. It extends a primarily topological map with new aspects that add the
previously lacking capability to perform cost-efficient path planning and map extension on
the topological level. The introduced additions include a multi-dimensional cost measure
for topological edges which records the most relevant aspects of terrain traversability, a
technique to learn consistent cost values from scratch based on feedback from the robot
during operation and a method to use the gained information for path planning with
user-selectable priorities.

To allow the prediction of traversability costs for topological edges which have not been
traversed yet, a set of methods to extrapolate edge costs from existing cost information
is developed. Furthermore, a new metrical ‘local traversability map’ is proposed which
stores cost modifiers for possible exploration directions in the vicinity of topological nodes
in a compact form. These cost modifiers are key to predict the traversal costs of edges that
lead into up-to-now unknown terrain. The thesis presents two new, sophisticated image
analysis techniques to fill these traversability maps. They use a long range stereo camera
system to estimate terrain traversability based on surface shape and visual appearance. A
temporary terrain model is constructed and immediately abstracted into light-weight cost
modifiers which are stored in a local traversability map. This ensures the maintenance of
a minimal world model, leading to a scalable navigation approach which can be used in
very large environments.

In order to validate the performance of the proposed methodology, a series of experiments
is conducted in both a three-dimensional simulation environment and the real world. The
results indicate that the global navigation system proposed in this thesis is indeed able to
perform cost-efficient path planning using the introduced hybrid map structure. At the
same time, the need to build and maintain a fine-grained, global world model which would
reduce the scalability of the approach is avoided. This strongly supports the claim that a
scalable yet cost-efficient navigation system can be designed by striking a balance between
the two well established types of purely metrical or topological navigation systems.
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1. Introduction

1.1 Motivation

Mobile robots capable of autonomous navigation in unstructured off-road terrain have re-
ceived a considerable amount of research interest throughout the last decades. Aside from
the scientific challenges posed by such systems, interest is spurred by the fact that these
robots have a broad range of potential applications. At first, usage scenarios focused on
security-related tasks, such as performing border patrols, guarding large corporate estates
(airports, fabrication plants), or the scouting of non-urban terrain during a military crisis.
More recently, researchers have started to envision the use of robotic systems for different
types of outdoor tasks. This includes agricultural services like autonomous harvesting,
repetitive transportation duties on construction sites and the ongoing monitoring of en-
vironmental conditions within large territories. Mobile off-road robots are nowadays also
considered as additional tools which can support human personnel working in disaster
areas. This scenario includes the deployment of robots for scouting, cleaning or mapping
tasks after natural catastrophes such as earthquakes or forest fires. Likewise, the systems
could be used after incidents that caused nuclear or chemical contamination.

In order to navigate efficiently through rugged, off-road terrain, the robot must be able
to reason about the varying degrees of traversability found in the environment. Conse-
quently, it needs to quantify the traversability of each considered path using a traversal
cost measure. Only such a metric allows to compare available travel options algorithmi-
cally and select the optimal alternative. The definition of an expressive cost measure and
its accurate correlation with the properties of the surrounding terrain are thus central
issues for the formulation of an efficient navigation strategy in off-road robotics.

Many established approaches which compute non-trivial cost measures deduce traversabi-
lity costs based on an accurate, global metrical model of the load bearing terrain surface.
This allows to detect both slopes of varying degrees and obstacles. However, the con-
struction and maintenance of such a detailed world model is problematic in large off-road
terrain for a variety of reasons.

On the one hand, the huge amount of data that has to be handled imposes a high burden
on a mobile robot’s computational resources. On the other hand, new sensor data must
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be incorporated into the existing world model in a metrically consistent fashion, which
requires accurate robot localisation. Especially in forested areas with much vegetation,
this requirement can be difficult to meet. After all, global localization sensors such as
GPS work with reduced efficiency in these places, and vegetation is not overly well suited
for landmark or point cloud based relocalization techniques due to issues like perceptual
aliasing, the unreliable detection of foilage or its viewpoint-dependent penetrability.

To address the scalability and consistency problems that arise with the use of a detailed
metrical model, some researchers have proposed to employ a more abstracted, mainly
topological representation for large-scale navigation. Such a topological model focuses on
representing navigation-relevant places and the possible driving options between them.
Usually, it does not contain metrical information about obstacles anymore. Instead, topo-
logical navigation approaches rely upon a subordinated piloting system which is capable
of detecting and circumventing obstacles at close ranges by itself, using current sensor
readings and possibly, a spatially limited, local world representation.

In general, these approaches scale much better than those which perform extensive met-
rical modeling of the environment. However, the topological methods currently in use
for global off-road navigation also abstract from most of the information needed to define
a cost measure which accurately reflects the characteristics of the corresponding path.
Thus, the resulting navigation system loses a great deal of efficiency: first by using the
abstracted topological model instead of a metrical map, and second by replacing realis-
tic traversability cost measures with a substitute metric (such as the distances between
topological map nodes) which does not accurately reflect the properties of the underlying
terrain.

It seems that the two predominant ways to build a world representation for robot naviga-
tion have some drawbacks when it comes to enabling large-scale, cost-efficient navigation
in off-road terrain. On the one side, techniques which use a detailed, metric world model
can perform cost-efficient planning, but fail to scale because they don’t abstract enough
from details. On the other side, topological approaches scale well, but suffer from too
much abstraction — since they also abstract from terrain traversability, they cannot sup-
port cost-efficient path planning. Thus, the question is: Is there a way to combine the
strengths of both approaches and derive a scalable, yet cost-efficient system for large-scale
navigation in rugged outdoor terrain? How can a robot represent, learn, predict and sense
appropriate cost measures for efficient path planning, without entailing the considerable
drawbacks of the expensive, ‘full detail’ world model?

The goal of this thesis is to help answering these questions.
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1.2 Goal of this Thesis

The goal of this thesis is to define and evaluate a robust and scalable methodology for
cost-efficient, global robot navigation in rugged and vegetated outdoor terrain.

In this context, ‘global navigation’ is understood as the task of generating navigation de-
cisions that have a spatial extent significantly larger than the immediate sensor horizon
of the robot. Thus, the researched navigation system, called the navigator, shall con-
centrate on robot navigation tasks starting above a range of about 10 meters, going up to
several kilometers. An expressive cost measure needs to be formulated in order to select
a path with optimal cost from the set of available options. However, the cost estimation
shall not require the construction of a highly detailed, global world model. Instead, a min-
imal world model has to be found which still allows reasoning about traversability costs.
This includes the selection of the optimal path at a global scale as well as the cost-efficient
exploration of untraversed terrain. At the same time, the model shall abstract from local
aspects of the environment or the robot’s exact trajectory. These issues are to be handled
by a piloting subsystem that maintains a metrically accurate, but spatially limited world
representation.

The existence of a local piloting system, called the pilot, is presumed in this thesis. The
pilot is responsible for ‘local navigation’. This entails steering the robot around obstacles
and towards a goal using a local world model with a size comparable to the robot’s sensor
range, e.g. a size of about 10 meters. Therefore, the global navigation strategy that is
to be found does not need to cope directly with the task of local obstacle avoidance or
physical robot control.

The main hypothesis underlying the thesis at hand is the assumption that cost-efficient
global navigation can be accomplished in a scalable way by building a minimal world
model and refining it continuously based on experience and self-observation of the pilot.
With this approach, the additional knowledge invested into the global navigation layer can
be kept at a minimum and a high degree of robustness against sensor noise or inaccurate
self-localization can be achieved. Instead of building separate cost estimation rules from
scratch, the global navigator can benefit from the world representation already constructed
in the pilot, reuse the domain knowledge invested there, and abstract it to optimize path
planning on a large spatial scale.

The design of a global navigation methodology that verifies this hypothesis and meets
the formulated goal raises a whole set of questions. The following aspects are deemed
especially relevant in this context and will be investigated thoroughly in the thesis:

Appropriate World and Travel Cost Representation

As stated in the motivation, a combination of metrical and topological map paradigms
might yield a suitable world model for cost-efficient global navigation in rugged off-road
terrain. This intuitive notion needs to be subjected to scientific analysis and matured into
the formulation of both a concrete world representation and an expressive cost metric that
are indeed well suited for global navigation.

Interaction of Global and Local Navigation Layers

Once a suitable type of global world model / map is formally defined, the interaction
between this model (managed by the navigator) and the pilot responsible for local nav-
igation has to be examined. How can an appropriate sequence of driving commands be
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generated for the pilot on the basis of the global map? Which techniques allow to de-
tect navigation successes and failures robustly? And how can the global world model be
adapted in response to these events in order to improve the overall map quality?

Consistent Travel Cost Assessment

The separation of global and local navigation leads to the effect that the physical trajectory
implemented by the robot is not pre-planned accurately by the global navigation system,
but emerges in situ through interaction of the piloting subsystem and the terrain. This
raises the problem of cost consistency, e.g. the question how to ensure that the navigator
works with path costs that reflect the costs which are actually incurred by the pilot. Can
consistent path costs for global navigation be determined at all if the driven path is not
known beforehand? And if not, can the transfer of cost experience from completed travels
to the navigator at least help to approximate the true costs in the long run?

Prediction of Travel Costs and Map Extension

In order to evaluate new travel options for global navigation, it is not sufficient to consider
only existing cost information. It is also required to predict the traversal costs of new map
connections as accurately as possible. This requires research into methods that allow to
transfer cost data between established and new paths within the global map. Based on
the capability to extrapolate costs, strategies to extend the map with cost-efficient new
paths shall be investigated. How can this be used to reach a previously unreachable goal
in unknown terrain?

Improved Large-Scale Travel Cost Prediction using Sensor Information

To improve the quality of cost prediction on the global navigation level, algorithms shall
be devised which evaluate sensor information over longer ranges than considered by the
pilot. However, the methods shall be focused on extracting only information needed for
the tasks performed by the navigator, e.g. for cost-efficient path planning. Likewise,
a representation shall be found that exclusively stores the information relevant to these
tasks for future use in order to keep the world model minimal.

1.3 Document Structure

The remainder of this document is structured as follows:

Chapter 2 presents several basic components that constitute the foundation for the tech-
niques derived in the subsequent parts of this thesis. It presents the physical robotic
system which is used to validate the developed methods in the real world and describes an
existing piloting system that fills the role of the robot’s ‘pilot’ for local navigation. This
component is regarded as a given and will be used by the global navigation strategies
which are the actual focus of this thesis. The chapter also introduces coordinate system
conventions that will be required in the following chapters to specify locations in the world
representation.

Chapter 3 deals with the definition and utilization of an appropriate world representation
for the envisioned task of global navigation in rugged terrain. It contains a survey of
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existing map types which represent navigation related knowledge and formulates both a
suitable world model and cost measure for global navigation. It also introduces algorithms
that facilitate the interaction between the navigator and the pilot. This includes the
generation of driving commands for the pilot using the navigator’s global map and the
adaptation of the map structure using success or failure feedback from the piloting layer.
The chapter also presents a learning mechanism that derives consistent global path costs
through observation of the local piloting layer.

The extrapolation of costs stored in the global map onto new connections and the use of
this capability for map extension is treated in chapter 4. A set of methods is introduced
which allows to transfer existing cost measures between connections in the global map.
The influence of using cost information with different degrees of locality on the accuracy
of the resulting cost prediction is evaluated and a precedence relation for the different
methods is defined. In the second part of the chapter, a method to exploit the cost pre-
diction capability for goal-directed and cost-efficient exploration of previously untraversed
terrain is proposed. Its performance is empirically tested in a real-world scenario.

Chapters 5 and 6 present two novel approaches to estimate terrain traversability costs
based on information from long range visual sensors. Algorithms are proposed to use
the derived information in order to improve the quality of cost prediction on the global
navigation level. Chapter 5 describes a technique which uses geometrical aspects of the
terrain to build a piecewise model of the surface slope and reason upon its traversability.
Appearance based criteria are applied to the sensed visual information in chapter 6 in order
to allow the detection of vegetation which appears solid but may actually be passable.
The performance of both sensor analysis methods is evaluated using a series of real world
image recordings.

Chapter 7 summarizes the obtained results and the contributions to the field of outdoor
robotics. The thesis concludes with a discussion of the achieved results and an outlook
on future work.
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2. Fundamentals

As outlined in the introduction, the global navigation methodology examined in this thesis
presumes the existence of a local navigation layer capable of controlling the employed off-
road robot on a local scale. This foundation has a substantial influence on the work
done in the scope of this thesis. Therefore, the off-road robot RAVON which is used
to test the proposed global navigation algorithms is briefly introduced in the following.
Afterwards, the existing piloting system which has been selected to fill the role as the
local ‘pilot’ for the global navigator is presented. The pilot is based on a behavior-based
framework and implements basic maneuvering capabilities such as approaching a local
target position and obstacle avoidance. After addressing these two topics, two coordinate
systems are formalized to allow the future specification of world positions in defined frames
of reference.

2.1 The Experimental Platform RAVON

In order to experimentally validate the developed global navigation methodology, a robot
capable of traversing rugged off-road terrain is required. Such a robot needs a power-
ful actuation system to provide the required maneuverability across uneven ground, and
therefore needs to be larger and heavier than many other robots (e.g. the Pioneer series)
used in other areas of mobile robotics. While this causes many additional technical prob-
lems, it also allows the integration of several fast computers with high processing power.
Thus, the developed algorithms can be more demanding than what is typically seen as
the limit of real time robotics.

Figure 2.1 shows the experimental wheel-based vehicle RAVON (Robust Autonomous
Vehicle for Off-road Navigation), which has been developed at the Robot Research Lab-
oratory of the University of Kaiserslautern in order to serve as a testing platform for
off-road navigation. RAVON has a length of 2.35 m, a width of 1.4 m, and weighs about
650 kg. It is propelled by four electrical DC motors and can climb slopes up to 45° with
a maximum velocity of 2 m/s. The motor currents of each motor are measured using hall
sensors. The currents are monitored continuously by two motor controllers employing
digital signal processors in order to prevent motor overloads. Additionally, the current
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(a) Front view (b) Side view
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(c) Typical operation terrain: Forest (d) Typical operation terrain: Rugged off-road

Figure 2.1: The experimental platform RAVON

measurements can be accessed by higher control level software and used e.g. to estimate
the robot’s current energy consumption. Front and rear axis of RAVON can be steered
independently, allowing advanced driving maneuvers such as tight turning radii or parallel
steering. The robot is powered by a set of 8 spiral cell lead batteries which results in an
operation time of about 4 hours in grassy terrain. Four industrial PCs running Linux form
the main processing core of RAVON. They are equipped with dual core CPUs to provide
a more advantageous power/performance ratio and connect with the sensors and actua-
tors via controller area network (CAN) buses. Two computer systems are additionally
equipped with graphical processing units (GPUs), as parts of the developed algorithms
have been ported to this architecture for speed reasons. The robot estimates its world po-
sition by fusing the output of two separate Global Positioning Systems (GPS), an inertial
measurement unit (IMU), an electronic compass and wheel encoders using a specialized
kalman filtering technique [Schmitz 06]. The global localization accuracy ranges from
below 20 cm in open space up to about 8 m in dense foilage. However, due to the use
of highly sensitive receivers and the redundancy of the employed systems, localization is
virtually never lost completely in natural forests.
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Figure 2.2: RAVON’s sensor systems

RAVON features a variety of sensor systems for obstacle detection (see figure 2.2). At
closest range, a spring-mounted bumper system is used to detect hindrances on a tactile
basis and provide both protection and a safety shutdown in case of collisions. Addition-
ally, it can be used to try pushing soft obstacles at very low speed and allows to detect
flexible vegetation upon contact using a depression sensor at the spring mount. Two
horizontally aligned 2D SICK laser range finders monitor close range safety zones (5 m
front and rear) with a 180° field of vision and an angular resolution of 0.5°. Obstacle
detection up to a distance of about 10 m relies on a wide angle stereo camera system with
a resolution of 640x480 pixels and a horizontal field of view of 60° and a 3D laser scan-
ner system (implemented by continually panning an upright mounted 2D scanner along
the vertical axis). The obtained distance measurements are used to classify the terrain
ahead into ground, vegetation/solid obstacles and overhangs. The gained information is
then integrated into a short term obstacle memory, extending 8 meters around the robot
[Schifer 07] [Schiifer 08]. This extends the obstacle avoidance capabilities to objects that
pass into the blind spots at the sides of RAVON. The obstacle avoidance sensors and
their detection areas are depicted in figure 2.3.

In the scope of this thesis, the sensor suite has been extended with a turnable high
resolution stereo camera system mounted on top of RAVON'’s chassis. This camera
system is used for shape- and appearance-based terrain traversability estimation in a
radius of up to 30 m. Further technical details for this system are given in section 5.2.1.
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Figure 2.3: RAVON’s visual sensor ranges ([Schifer 07])

2.2 The Behavior-Based Piloting System

The introduction has listed some reasons why control systems that plan actions based
on complex physical models of the robot and the environment are not ideally suited for
rugged off-road terrain. Therefore, a different approach has been researched in previous
work in order to build a piloting system able to guide RAVON safely around obstacles
while approaching a local goal position.

The pilot that results from this effort is modeled as a behavior-based system according
to the classification scheme of [Matari¢ 02] and consists of a set of interconnected behaviors
instead of a single, monolithic control system [Proetzsch 07a]. Each single behaviour in
the pilot network has a clearly defined and typically very simple ‘goal’ which it wants
to accomplish, and considers only the aspects of the world that are relevant for this
task. These aspects are often derived from current sensor data, although the use of
more persistent information is also permitted. Complex motions are not pre-planned,
but emerge through interaction of multiple behaviors. In this way, the control depends
less on an accurate, global world model and is therefore more robust against false sensor
interpretations.

2.2.1 The iB2C Architecture

The formal basis of the piloting system is constituted by the iB2C behavior-based system
architecture presented in [Proetzsch 07b] and [Proetzsch 08]. As some insight into the
internal workings of the pilot is required for the later exposition, the framework is now
introduced shortly.

The fundamental building blocks in iB2C are behavior modules, such as depicted in figure
2.4a. Each behavior module receives a vector of input data € and produces an output
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Figure 2.4: The building blocks of 1B2C

vector 4. The semantic function of the behavior is modeled by the transfer function F,
which describes how the output of the module depends on the current input values. F' can
express a purely reactive response to the input values, but it is also possible to formulate
a more complex function which uses the behavior’s internal state (such as a state machine
or a pattern recognition algorithm). This way, both reflex-like sensor-actor couplings
and highly deliberative behaviors can be implemented (as postulated for behavior-based
architectures by [Matari¢ 97]).

Aside from the input vector € and the behavior’s internal state, the transfer function
is modulated by two control inputs which coordinate the interaction between different
behavior modules. Each behavior has a stimulation input s € [0, 1] which represents the
external stimulation requested by other (hierarchically superior) behaviors. The inverse
effect is induced by the inhibition input vector ;, which contains a set of inhibition
inputs € [0, 1] from which the maximum inhibition value is taken into account at every
given time. As output, each behavior generates two control signals that allow to deduce
information about its current state or influence other behaviors. The activity a € [0, 1]
represents the amount of influence that the behavior wants to achieve in the behavior
network and is typically connected to the stimulation input of another (fusion) behavior.
The target rating r is a measure which specifies how unsatisfied the behaviour is with
the current situation given the behaviour’s ‘goal’. It ranges from 0 for totally satisfied
behaviors to 1 in the totally unsatisfied case.

Competing behaviors are coordinated by fusing two or more of them using standardized
fusion behaviors (figure 2.4b) which provide the very same interface as basic behavior
modules. The input vector e of fusion behaviors is composed of the activities a;, the
target ratings r;, and the output vectors u; of the particular competing behaviors B;. The
transfer function F' is the fusion function (weighted or maximum) processing the input
vector value-wise to a merged output vector u. The behavior set B = {By, ..., B,} and a
corresponding fusion behavior can be put into a single behavior group which implements
the same interfaces as a single behavior. In this way, a hierarchical network can be created
by combining atomic behaviors into more and more complex behaviors.
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2.2.2 Layout of the Pilot

As an example for the use of the iB2C components in the actual implementation of
RAVON’s piloting layer, the Forward Obstacle Stop behavior group is shown in figure
2.5.

Forward Obstacle Stop

p

Front Bumper
Stop

I—; Front Camera % Front Camera
Stop (Barriers) Stop (Holes)

Ié Front 3D
Scanner Stop

Figure 2.5: An exemplary behavior group of the piloting layer

Each of the contained behaviors wants to stop the robot’s forward motion in case an
untraversable obstacle is detected in close proximity. However, each behavior considers a
different aspect of the available sensor data. The Front Bumper Stop behavior, for example,
becomes active and unsatisfied (both the activity a and the target rating r rise) in case
the sensors detect pressure on the frontal bumper. Via the fusion behavior, this activity is
ultimately fed back as an inhibition into the Forward (Creep Mode) behavior, reducing its
activity and hence, the forward speed of the robot. In combination with the other basic
behaviors, the Forward Obstacle Stop behavior group realizes a more complex behavior
which reacts to multiple sensor modalities that require a vehicle stop.

Moving towards a more high-level view and considering the arrangement of the pilot’s main
behavior groups only, the complete behaviour system is laid out in three main layers, as
depicted in the simplified overview in figure 2.6.

The topmost interface layer provides the exterior interface to the services of the robot
pilot. The pilot is able to either receive manual steering commands from a human operator
using a joystick, or it can approach a given target position or pose specified in its working
coordinate system WCS (see the next section). The latter two actions are initiated if
the Approach Target Position or Approach Target Pose behaviors are activated (receive an
activation input > 0) by the user or, as depicted in the figure, by the global navigator. In
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Figure 2.6: The three main behavior layers of the pilot

both cases, the behaviors generate a driving command that depends on the current robot
pose and the relative orientation to the given goal position. In case of the Approach Target
Pose behavior, the behavior tries to reach the given goal position and to achieve a given
orientation at this point. This is internally accomplished by a whole group of behaviors
which is responsible for lunging out before the goal position is reached in order to turn the
robot appropriately. However, due to the hierachical composition of the iB2C behaviors,
this complex movement sequence appears to be implemented by just one visible behavior

group.

The driving direction and speed set by the interface layer is subsequently modified ac-
cording to the judgement of the behaviors in the obstacle avoidance layer. This layer
contains two behavior groups (named Avoid Left/Right) that turn the robot left or right
if obstacles are detected on either side by any of the available sensor systems. If obstacles
are detected directly ahead, the Evasion group is responsible for deciding on which side
the obstacle shall be passed. This decision remains valid until the obstacle situation has
been negotiated completely, avoiding oscillations of the Avoid Left/Right behaviors due to
sensor noise. The behavior groups Slowdown and Stop decelerate or stop the vehicle close
to obstacles. Further behaviors, which are omitted here for clarity, are capable of effecting
ranking maneuvers and retracing to previous positions in case a deadlock between two or
more behavior groups occurs and would stop the vehicle for indefinite amounts of time.



14 2. Fundamentals

As a result of the influence of the obstacle avoidance layer, the requested driving direction
and speed is potentially altered in order to avoid obstacles and ensure the safety of the
vehicle. Based on this ‘safe’ driving command, the actual motor currents are computed
by a kinematic model and fed into the motor control behavioral layer. This layer includes
(among others) four behaviors that limit the motor currents to avoid overload situations.

It is important to stress that the actual trajectory driven by the robot after the pilot’s
Approach Target Position / Pose behaviors are activated emerges as a result of complex
interactions between the subordinated behaviors and is thus not pre-planned or completely
predictable in advance. This poses a significant problem for any high level control that
tries to perform the tasks of path planning and traversal cost estimation. One of the main
contributions of this thesis is the development of a navigation system which is capable
of consistent cost estimation, in spite of the unsteady foundation of the behavior-based
pilot.

2.3 Coordinate Systems for Outdoor Environments

The creation and use of a persistent map for path planning requires a coordinate system
which remains valid even if the robot is turned off temporarily or reinitialized. The sys-
tem therefore needs an origin and coordinate axes which are independent of any robot
related information (such as heading or position during startup). In the scope of this the-
sis, a cartesian ECEF (earth-centered-earth-fixed) coordinate system has been selected as
a suitable convention which exhibits these properties. This coordinate system is subse-
quently called the Earth Coordinate System ECS to conform to the naming scheme of
the other coordinate systems introduced later. The ECS is a three-dimensional, cartesian
coordinate system which originates at earth’s center of mass as shown in figure 2.7a.

ECSZ A
North Pole ECS North Pole| ™, WCS Z
CS
Prime

Meridian ¢
WCS Y £

ECS Y ’

Equator Equator

ECS X
(a) Earth Coordinate System ECS (b) Working Coordinate System WCS

Figure 2.7: Coordinate systems used by navigator and pilot

The ECS Z axis is chosen to be parallel to the earth’s rotational axis and thus pokes
through the geographic north pole. The X axis is defined to intersect the equator exactly at
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the prime meridian (the intersection point has latitude 0° and longitude 0°in the commonly
used latitude / longitude coordinate system). The ECS Y axis is completely determined
by the two already defined axes and the requirement that ECS is a cartesian coordinate
system with three perpendicular axes and a positive (right-handed) orientation. Under
these conditions, ECS Y must be equal to ECS Z x ECS X, where x denotes the cross
product in 3. Here, the property is exploited that the cross product of two vectors yields a
third vector which is perpendicular to both. The presented definition of the ECS ensures
that the ECS is always in sync with the earth’s rotation. Therefore, the coordinates
of any point that is fixed with respect to the earth’s surface always remain constant.
In comparison to the geodetic WGS 84 system commonly used for GPS receivers, ECS
coordinates have the benefit that they can be converted to other cartesian coordinate
systems without using non-linear, trigonometric functions. ECEF also does not require
the introduction of multiple mapping zones as done in the Universal Transverse Mercator
(UTM) system.

Although the ECS is stable across robot initializations and can be used to designate
any place on earth with fixed coordinates, the ECS coordinates of such a place are typ-
ically not very convenient to use. For example, the ECS coordinates of the University
of Kaiserslautern are (4119033.7 m, 560825.9 m, 4821521.8 m). So, in order to provide a
coordinate frame which is easier to handle and which allows to specify goal positions by
hand, the Working Coordinate System WCS is introduced in addition to the ECS.
The WCS is more convenient to use, has a more accessible value range and more intu-
itive coordinate axes. However, it depends upon the initial position of the robot and is
therefore not suited to mark a position with a unique set of coordinates in a persistent
fashion.

The WCS origin is set to the point where the robot control system is first initialized after
system startup. The WCS Z axis is chosen to point ‘upwards’; e.g. to have exactly the
opposite direction as the earth’s gravitational force vector. Thus, the WCS Z vector can
be expressed easily in the ECS frame as the normalized vector running from the center of
the earth to the WCS origin (see figure 2.7b). The WCS X axis is constructed to point
‘north’, e.g. point towards the north pole. However, as the WCS Z axis is already fixed,
the WCS X axis can only approximately point to the north pole while still remaining
orthogonal to WCS Z. Thus, a line running along the WCS X axis is required to intersect
a line running along the ECS Z axis, but the intersection point does not lie at the north
pole.

2.3.1 General Coordinate System Conversion

In the following chapters, it will frequently be required to transform coordinates between
different coordinate systems. In order to describe such conversions mathematically, the
use of homogeneous coordinates is very convenient. As this is a standard mathematical
technique used frequently in many areas of robotics and computer graphics, only a short
recapitulation is presented. Further information can be found in [Craig 89).

Informally speaking, a point or vector p given in three-dimensional coordinates (x y z)T
can be projected into homogeneous space by ‘adding’ another dimension and setting the
fourth coordinate to 1, leading to the coordinates (z y z 1)T. The main benefit of using
this representation in robotics is that it allows to specify both rotation and translation
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of coordinates in one single matrix. Since the conversion from one right-handed cartesian
coordinate system into another can be expressed as a rigid motion, a single transformation
matrix therefore suffices to completely describe the conversion between any two such
coordinate systems.

Before adressing how conversion matrices can be determined, some notational terms are
fixated to allow precise discussion of coordinates in different reference systems.

Definition 2.1 The following notational conventions are defined:

o The notation p is used to express that the coordinates of the vector or point P’ are
referenced on the coordinate system A.

o A matrix M that converts coordinates given in a coordinate system A into coordi-
nates referenced on another coordinate system B is denoted as M.

There are two frequently used ways to formulate a conversion matrix M¥. First, it is
possible to transform a set of coordinates given in the source system A step by step into
the system B using a sequence of basic translation and rotation matrices. M¥ can then
be computed by multiplying all of the elementary transformation matrices together in the
right order. This is an intuitive way to specify the transformation and is frequently
used to define the local coordinate system of a robot in relation to its environment.
Often, three rotation angles called roll, pitch and yaw are used to specify the robot’s
orientation with respect to the three coordinate axes of B. A subsequent translation
step with the three coordinates z,y, z then specifies the robot’s position. It is common
to refer to the combination of the orientation transform and the position transform as
the (6D) pose transformation of the robot with respect to the original reference system,
or simply the pose of the robot. The mathematical technique to convert between a 6D
robot pose (z,y, z, roll, pitch, yaw) specified in the WORLD coordinate system and the

corresponding transformation matrix MAsHEP is documented in [Craig 89).

The second way to define the conversion from a coordinate system A into another system
B is to use the known coordinates of A’s three canonical basis vectors in the destination
coordinate system and an additional translation vector that relates the origins of A and
B. Let ZB = (xy 1 25)" be the coordinates of A’s X axis base vector (4 = (100)"
by definition) and 2 and 28 be defined likewise for A’s Y and Z base vectors. Also, let
OB = (0, Oy, Og)T be the position of A’s origin in the coordinate system B. Then,
the transformation matrix M¥% which transforms coordinates from the source coordinate
system A into B is simply defined as:

To Yo <o Op

O
MB = rr Y1 oz 1 921
A To Y2 22 Os ( )
0O 0 0 1

According to the notational conventions stated in definition 2.1, this leads to

o =My (2.2
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It can also be shown that the inverse of M¥ transforms coordinates back from the desti-
nation system B into A. Therefore,

= (ME) P (2.3)

which automatically forces
Mg = (M5)™ (2.4)

according to definition 2.1.

2.3.2 Conversion between WCS and ECS

Equation 2.1 offers a convenient way to determine the coordinate conversion matrix that
leads from the previously introduced working coordinate system WCS to the global ECS.
The calculation requires that the ECS coordinates of the robot’s initialization point Oy,
are known. This can be easily accomplished by using the GPS sensor information available
to the robot.

Given Oy, the ECS coordinates of the WCS Z axis base vector 27 can be calculated
by normalizing the vector running from the ECS Origin Og (with ECS coordinates (0,0,0)
by definition) to Ow:
OrO
zpos _ OrOw (2.5)
|0E0w |
To determine the WCS X axis vector, one can exploit the fact that the WCS X axis must
lie in the plane spanned by the WCS Z axis and the ECS Z axis in order to intersect the
elongated ECS Z axis as postulated in the WCS definition.

Using the constraint that the WCS Y axis must be orthogonal to the plane in which the
WCS X axis resides (and thus, both the WCS Z and ECS Z vectors), the ECS coordinates
of the WCS Y axis base vector are given by

0
ZECS x| 0
1
gres = (2.6)
0
7B0S % | o
1
Z P9 is now easily determined using
505 _ JECS  7ECS 27
755 % £ECS

With the ECS coordinates of all three WCS base vectors and the origin position Oy,
available, MEZ? can be computed according to equation 2.1.
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Algorithm 1: SetupCSWithZAxis(Point3D origin, Vector3D x_direction, Vector3D
z2_axis)

Data: Point3D origin, Vector3D x_direction, Vector3D z_axis
Result: Coordinate Conversion Matrix M

Vector3D z < normalize (z_azis)
Vector3D y < normalize (z x z_direction)
Vector3D z «— normalize (y X z)

To Yo 2o OTLGIN

T1 Y1 21 origing

To Yz R2 OTiging
0 0 O 1

Matrix M =

return M

2.3.3 Conversion Functions

The approach that has been used to determine the MF%% matrix in the last paragraph

can be also employed to calculate the transformation matrices between other coordinate
systems. Because the capability to set up local coordinate systems will be used extensively
later, the computation of the transformation matrix is packaged into algorithm 1.

As can be observed, the function must be supplied with the origin of the source coordinate
system SCS (parameter origin), the coordinates of the SCS Z axis vector (parameter
z_axis) and the direction into which the SCS X axis is supposed to point (parameter
x_direction). As before, it cannot be guaranteed that the X axis runs exactly along
the vector given as parameter x_direction. All coordinates of the three input parame-
ters need to be specified in the destination coordinate system DCS. Upon invocation of
the SetupCSWithZAxis function, a transformation matrix MES is produced. In the ac-
tual implementation, MEZ3 is generated by executing MEZ? = SetupCSWithZAxis(Oyy,

(001)", Ow).

Analogous to algorithm 1, a second algorithm is formulated in algorithm 2, which again
constructs a conversion matrix M given three parameters. This time however, the x_axis
parameter determines the X axis base vector ezactly and the z_direction parameter
indicates the desired direction of the Z axis. Although this function has no immediate
use for converting between WCS or ECS, it will be required later to setup other local
coordinate systems.

2.4 Conclusion

In this chapter, several prerequisites for the following exposition of the researched global
navigation methodology have been presented. The mobile off-road robot RAVON was in-
troduced along with its physical parameters and the available sensor equipment. This test
platform will be used in the following to validate the performance of the proposed methods
in the real world. Furthermore, the robot’s behavior-based ‘pilot’ for local navigation was
described as far as this will become relevant for the interaction with the researched global
navigation system. The chapter ends with the formalization of an earth coordinate system
ECS and a temporary working coordinate system WCS. The ECS allows to specify place
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Algorithm 2: SetupCSWithXAxis(Point3D origin, Vector3D xz_azis, Vector3D
z_direction)

Data: Point3D origin, Vector3D z_axis, Vector3D z_direction

Result: Coordinate Conversion Matrix M

Vector3D x «— normalize (z_axis)
Vector3D y < normalize (z_direction X x)
Vector3D z « normalize (x x y)

To Yo 2o OTLgINy
r1 Y1 21 origing
Ty Yz 2o OTigin,

o 0 0 1

Matrix M =

return M

coordinates that remain unaltered even if the robot is reinitialized and is thus suitable for
use in a global map. The WCS changes between initializations and is thus unusable for
persistent maps, but allows to specify goal positions in a much more intuitive, local frame
of reference. The mathematical tools required to transform between WCS and ECS are
introduced as well as two general functions that will be used later to construct additional
local coordinate systems.
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3. Cost-Efficient Large-Scale
Navigation

Whenever a mobile robot is required to navigate beyond its sensory horizon, it must
either rely on potentially ineffective or misleading local search strategies (like the ‘bug
algorithms’ [Lumelsky 87]) or use some kind of world model to store cues for navigation.
Such a world model is normally referred to as a ‘map’ and can be provided a priori or
build from experience. Many different map representations have already been proposed
in literature.

Starting from a survey of existing map types in section 3.1, section 3.2 evaluates the
inherent strengths and weaknesses of the most prominent map concepts with respect to
the task of outdoor navigation. Section 3.3 then presents the basic map representation that
has been proposed on the basis of this evaluation and formalizes it up to the degree required
for precise discussion. This basic map concept will be extended further in chapter 4 in
order to incorporate information for exploration. The current chapter remains restricted
to navigation within a given map.

Since existing literature does not provide a suitable cost measure for the envisioned ap-
plication in off-road terrain, a novel cost measure is developed and a methodology to
learn increasingly accurate estimates for it through experience is proposed. Finally, the
obtained benefit and flexibility of this learning scheme is experimentally validated using
simulations and real-world experiments. The employed cost measure, the learning ap-
proach and the experimental validation results have been published in [Braun 08a]. The
chapter ends with a conclusion and a critical review of the presented approach that points
out avenues for future work.

3.1 A Survey of Existing Map Types

The map types for mobile robot navigation found in literature can be broadly divided
into the three classes of metrical, topological and hybrid maps. In order to highlight
the common benefits and weaknesses inherent in these different data representations, the
focus of this section is placed on the map structures themselves rather than the algorithms
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used for their creation. For a good survey and comparison of different mapping algorithms
(at least for indoor applications), the reader is referred to [Thrun 02].

3.1.1 Metrical Maps

Purely metrical maps are probably the most common type of maps used for mobile robot
navigation today. The distinction between metrical and topological representations is
often somewhat vague. An attempt to provide a set of defining characteristics of what is
considered a metric map in the scope of this thesis is made in definition 3.1.

Definition 3.1 A map is considered to be metric, if it exhibits the following three char-
acteristics:

e The map content is stored in one global frame of reference which defines a mathe-
matical distance metric between any two map locations.

e The positional data is unabstracted, i.e. the accuracy of the internal map is com-
parable to the accuracy of the sensor data available to the mapping system.

e All locations are equally important. The mapping system does not model special
places explicitly.

The two most prominent metrical map types are grid maps and feature maps. Both are
introduced below.

3.1.1.1 Grid Maps

Grid maps were among the first widely known and successfully used metrical map types
for mobile robots and are still popular due to their simplicity and intuitive represen-
tation. Grid maps divide space into adjacent portions of equal metrical sizes. For a
two-dimensional map, this results in a square grid, while the three dimensional grid map
resemble a rubics cube. Both dimensionalities have been used [Elfes 89] [Moravec 96], but
three-dimensional grid maps are rare due to their excessive storage requirements. Two
major variants of grid maps are occupancy grids and elevation maps.

Occupancy Grids

Occupancy Grids, originally proposed by Moravec [Moravec 88] and Elfes [Elfes 89] are
grid maps where each grid cell stores a probability value that specifies the estimated
probability of this cell being occupied by an obstacle (see figure 3.1 for an example).

In the original approach [Elfes 89|, a single, global occupancy grid was iteratively filled
and updated using range measurements indicating the amount of free space in a certain
direction up to the nearest obstacle. The measured distance was conditioned on a prob-
abilistic measurement error model before being used to update the grid cell occupancy
values (figure 3.2). This accounted for the typical noisy performance characteristics of the
used sonar sensor and provided some degree of robustness against erroneous data. While
the original probabilistic sensor model was derived by hand, later approaches learned it



3.1. A Survey of Existing Map Types

23

Figure 3.1:
Occupancy grid map [Thrun 96b]

Each pixel represents one grid cell, darker col-
ors indicate higher occupancy probabilities.
Thus, white pixels denote free space, gray pix-
els represent unknown areas and black pixels

Figure 3.2:

Sonar sensor model [Moravec 96]
The drawing shows the quantitative distribu-
tion of obstacle probability as a function of
distance, given a sonar distance measurement
d taken from point p.

stand for obstacles.

from examples in order to improve robustness and simplify adaption to different types of
equipment [Moravec 93] [Thrun 96b].

Regardless of the employed sensor model, occupancy grids require accurate robot local-
ization in order to incorporate new sensor data at the right location. Elfes proposed a
correlation-based map matching algorithm for this - a locally built occupancy grid map
surrounding the robot was iteratively matched with the global occupancy grid. The best
match (based on a correlation of the grid cells occupancy values) provided a translational
and rotational correction vector that could be applied to the robot pose estimate in order
to compensate position errors. Although this approach can cope with small deviations,
it is not able to localize the robot if it has no previous information on its approximate
position without conducting a computationally intractable full search. Furthermore, the
achievable relocalization accuracy depends upon the metrical size of the grid cells.

Since their invention, a lot of variations have been developed for occupancy grids and
their related processing algorithms. A rather minor modification changes the type of sen-
sor used as data source. While the original work obtained the range measurements using
sonar sensors, other researchers opted to use laser range finders [Yguel 06] or stereo vision
[Jennings 97] [Thrun 96b]. Further modifications have been spurned by the facts that the
map matching procedure can only compensate local errors and is computationally very
expensive. Hierarchical methods that use occupancy grids of multiple scale levels and
perform a coarse-to-fine correlative map matching have been proposed to reduce the time
required for map matching [Elfes 89]. Another speedup approach that has been proposed
more recently harvests the parallel computational power of programmable graphical pro-
cessing units (GPUs) [Yguel 06]. Yguel et. al. use the GPU as a specialized hardware
component to apply the basic map matching scheme on high-resolution grids and multiple
laser range sensors in real time.

Other approaches enhance the local grid map correlation scheme to allow global local-
ization and to recover from catastrophic failures. [Fox 99] presents a global localization
scheme based on the Markov assumption which effectively uses a 3D grid map of the robots
configuration space (z,y, ). Each cell stores the estimated likelihood that the robot has
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the corresponding pose. Sensor readings are then used to iteratively update these pose
probabilities using Bayes theorem, making poses where the sensor readings agree with
the stored (occupancy grid or geometrical primitives) map more likely, while poses in-
consistent with the sensed data become penalized. Although this localization scheme can
solve the global localization problem and is based on a sound mathematical foundation,
it is even more computationally intensive than the original map matching, which only
considers the local vicinity of the robot. Therefore, an alternative formulation based on
a monte-carlo approach has been proposed [Fox 01] [Thrun 01}, which does not explicitly
generate a 3D grid map of all possible robot poses, but rather generates a finite amount of
samples in the robots configuration space. The sample distribution thereby approximates
the a posteriori probability of the robot pose, conditioned on the robots actions and its
perceived sensor data.

Elevation Maps

Digital Elevation Maps (DEMs) are a variant of grid maps that share the regular spatial
grid layout, but store terrain heights instead of occupancy probabilities per cell. They
are often used as a replacement for occupancy grids in outdoor scenarios, because one
can easily derive terrain slope from adjacent elevation map cells, which is a key factor
for traversability analysis of outdoor terrain. Impassable obstacles are typically modeled
(somewhat implicitly) as patches with very great heights, resulting in untraversable steep
slopes. Most navigation approaches that use this representational form compute naviga-
tion commands in a two-step fashion; first an elevation map is produced based on a 3D
point cloud generated using stereo-vision [Singh 99] [Thrun 06] [Hadsell 07al, laser range
finders [Moorehead 01] [Ye 04] or both [Kweon 92] and second, the elevation map is ana-
lyzed to yield a grid map containing traversal costs. This traversability grid map can then
be employed to compute the actual robot paths using A*-type algorithms [Ferguson 04].
Since the estimation of terrain height from point clouds requires several 3D points per
grid cell, elevation maps often consist of rather large grid cells with side lengths ranging
from 20 cm [Pfaff 05] up to 1 m.

A benefit of using elevation maps is the early abstraction from the full 3D information
contained in the sensed point clouds and the resulting computational savings. However,
the storage of a single height value per grid cell can only express one surface per grid
cell. Therefore, terrain with overhanging geometry or multiple levels, such as large trees
or bridges, cannot be modeled correctly by standard elevation maps. In order to counter
this well-known problem, [Pfaff 05] recently proposed to classify single points of 3D point
clouds into the four categories traversable, non-traversable, vertical and vertical-gap based
on their context and compute an extended elevation map based only on the lowest
traversable or vertical-cap points of each patch (see figure 3.3). [Triebel 06] extends this
approach further and proposes multi-level surface maps, which store multiple surfaces
per grid cell instead of a single one. The segmentation of 3D distance measurements
into multiple surfaces is based on the classification scheme of [Pfaff 05] combined with a
distance heuristics.

While both approaches eliminate overarching points from the sensor data and thus extend
the applicability of elevation map to terrain containing overhangs, they need to classify
each sensed range point prior to map generation, resulting in increased computational
effort and an additional source of error. Both classification schemes are furthermore biased
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Figure 3.3: Computing an extended elevation map in front of a bridge ([Pfaff 05])
(a) shows the classification of a 3D point cloud into traversable (green), vertical (red) and vertical-gap
(blue) points. (b) shows an elevation map computed using only traversable points from (a).

toward vertical structures, which are typical for man-made constructions such as bridges,
but might be too restrictive for complex natural environments like cluttered forests.

Since elevation maps are dense metrical maps like occupancy grids, they too require accu-
rate localization in order to incorporate new data at the right location. However, published
approaches typically do not use a map matching procedure based on height values, which
would be analogous to the occupancy grid method. Instead, some rely on absolute sensor
systems available outdoors such as GPS combined with wheel odometry and accept the
positional error that cannot be eliminated by this approach. Others use an additional
feature-based map (see section 3.1.1.2) for localization. The reasons for not using eleva-
tion maps directly for localization are not clearly stated, but two possible causes might
be that the terrain height estimates are either too unstable under different viewpoints or
the grid map resolution is simply not fine enough for acceptable relocalization.

3.1.1.2 Feature Maps

In contrast to grid maps, feature based maps do not represent space uniformly with equal
precision, but store explicit features and their spatial locations instead. Since feature
positions can be stored with arbitrary accuracy and are not blurred by any discretizing
grid, feature maps support precise robot (re-)localization well. Typical feature based
localization approaches proceed in three phases. After an initial feature identification
step, which detects relevant features from current sensor data, a data association phase
establishes correspondences between currently sensed features and those already stored in
the map. Using these correspondences, pose estimation of the own position relative to the
map can be performed.

Many different types of features have been proposed as building blocks for feature based
maps. They vary broadly in distinctiveness and range from simple, indistinguishable basic
features up to highly expressive landmarks. Since the level of feature distinctiveness also
influences the applicable range of algorithms and suitable data structures, both subclasses
are treated separately in the following paragraphs.

Basic Features

Arguably the simplest entities usable for feature based maps are surface points stemming
from range sensors such as laser range finders or stereo cameras. These sensors quickly
provide range measurements in larger numbers and with much higher angular precision
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than ultrasonic sensors. Due to the increased accuracy, the measured distances can eas-
ily be projected onto points in three-dimensional space, yielding point clouds outlining
terrain and obstacle surfaces. These point features (also referred to as point obstacles by
[Thrun 02]) can be directly used to construct a point feature map. It is also possible
to construct a basic feature map from an existing occupancy grid map by constructing
point features for all grid cells which exceed a given occupation probability threshold.

Figure 3.4 shows two examples taken from [Brennecke 03] of a real outdoor scene plus two
and three dimensional point clouds created by using a panning laser scanner.

(a) Original scene (b) 2D point cloud (c) 3D point cloud

Figure 3.4: Examples for point clouds usable as basic feature maps

A great benefit of point feature maps is that they do not require any feature identification
or classification stage, since each sensor measurement is directly used as a feature. The
downside of this is that each sensor quickly produces a lot of features and consequently,
computational operations on these maps are typically slow and memory taxing. Also,
association between stored maps and fresh data can only rely on location-based heuristics
to assign point correspondences. This leads to the requirement of a good initial pose
estimate for robot relocalization and complicates global relocalization approaches based
on point feature maps.

Nevertheless, point feature maps are quite often utilized for robot localization in both
indoor and outdoor environments. In order to determine the pose of a robot given such
a map, approaches such as [Nuechter 06] and [Brennecke 04] match the stored map M
containing 3D point feature coordinates m; in a global coordinate frame with the data set
D of currently sensed point obstacles d;, projected into global coordinates using a robot
pose estimate p. The goal is to find the rotation R and translation ¢, which maximizes
the overlap between the point clouds of D and M. The computed affine transformation
can then be applied to correct the robot pose estimate p in a fashion quite similar to the
map matching procedure proposed for occupancy grids (Section 3.1.1.1).

Mathematically, R and ¢ are computed using a scan matching algorithm that computes
a rotation R and translation ¢ which minimizes the summed distances of corresponding

point features:
|M| |D|

] . . Ppp— . 2
argmin y > wijlmi — (Rd; + )|, (3.1)
i=1 j=1
where the association weights w; ; are equal to 1 if the features m; and d; correspond to
each other and 0 otherwise.
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In 1992, [Besl 92] proposed a two-step iterative method now called the Iterative Closest
Point (ICP) algorithm to perform both the data association and the minimization of
equation 3.1 on the basis of two point feature maps. To fix the values of w; ;, the algorithm
heuristically assumes that the feature m; corresponds with the spatially closest feature
d;, if their mutual euclidean distance remains below a threshold d,;,4,. Then, R and ¢ can
be computed using a variety of different methods. While [Besl 92] used the Levenberg-
Marquardt numerical optimization technique for this, other researchers have proposed
spring-relaxation models [Eggert 98] or closed-form analytic solutions summarized and
compared in [Lorusso 95] [Eggert 97].

Experience has shown that the concrete method used for the computation of the affine
transformation (R, t) has little impact on the final localization result [Eggert 97]. In con-
trast, the selection of correct correspondences between point features is crucial for both
convergence speed and successful convergence. Therefore, improved heuristics based on
the basic ICP approach have been proposed. [Lu 94] presents the ‘Iterative Dual Cor-
respondence’ (IDC) heuristics, which alternates between finding point feature correspon-
dences using the ICP rule and a new rule called iterative matching-range-point (IMRP),
which selects feature pairs which both lie close together and have the same distance from
their respective feature sets center of gravity. As motivation behind this approach, Lu
et. al. state that IMRP does not tend to produce correspondences which cancel out the
rotational component R of the affine registration transformation as ICP commonly does.
Therefore, the IMRP quickly converges to the right rotation, while the alternating use of
ICP takes care of calculating the correct translation.

Data structures for point maps are required to handle both a large number of features
and support efficient lookup of the closest neighbors for each candidate point within a
maximum distance. The obvious, brute-force search through a complete list results in a
complexity of O(n?) for n data points and is inapplicable for real-time navigation. Conse-
quently, point feature maps are preferably stored in tree-like data structures that simplify
neighborhood searches instead of plain feature lists. [Nuechter 06] presents a summary of
different implementations and concludes that a kD-tree which generalizes binary search
trees to multiple dimensions is a suitable representation. kD-trees recursively partition
space along one coordinate of the k-dimensional space and can quickly exclude whole sub-
trees from neighbor searches, if a candidate is sufficiently far away from nearby partition
boundaries. To exploit this characteristic to the fullest, [Nuechter 06] proposes to parti-
tion space along the dimension with the largest extent and provides some speed bounds
for this case.

Landmarks

While basic features are practically indistinguishable from each other except by their
spatial position, landmarks can be defined as highly distinctive sensor ‘anomalies’” which
can be detected and uniquely identified from a large collection of sensorial data. Landmark
detection and identification typically requires the use of an information-rich sensor, such
as a color camera, and the implementation of sophisticated pattern recognition methods.

Distinct landmarks are much rarer than basic features and cluster around places with
special environmental characteristics, so they are distributed rather irregularly. This
property can be an advantage if the mapped features are also relevant for the navigation
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task at hand, because in this case, the resulting maps focus the robots computational
effort onto relevant data quite naturally. On the other hand, landmark maps typically
lack coverage of sensorially poor parts of the environment, which makes path planning
or traversability analysis in these areas difficult. Indeed, their primary application is
robot localization, but in contrast to basic feature maps, landmark maps are much more
compact and less affected by the data association problem. This extends the range up to
which successful localization can be performed and allows the application of algorithms
that spend more computational effort per feature than ICP-type approaches.

Early uses of landmark based maps for robot localization include geometrical triangulation
and trilateration techniques. [Sugihara 88] presents several localization approaches based
on known landmark positions and angles between them observed by a single camera.
[Avis 90] extends this algorithm to take uncertainty into account, while [Betke 94] uses a
complex number representation to reduce triangulation runtime complexity to O(n) for
distinguishable landmarks.

Another prominent class of methods that relies on landmark based maps employs the
Extended Kalman Filter (EKF) for simultaneous localization and mapping (SLAM). The
Kalman Filter is a general, statistically motivated technique for the estimation of a sys-
tem’s state using both an (approximative) model of the system’s future behavior and
potentially noisy measurements of some observable aspect of the system. Building upon
initial work from [Smith 90], most kalman-based techniques such as [Dissanayake 01],
[Tardos 02] or [Andrade-Cetto 01] choose the current position of a robotic vehicle and the
estimated location of all known landmarks as the system state and use measurements of
relative distances between the robot and landmarks as measured input (see figure 3.5).

Features and Landmarks

Vehicle-Feature Relative
Observation

Mobile Vehicle

Global Reference Frame

Figure 3.5: SLAM with landmark feature maps (adapted from [Dissanayake 01])
[Dissanayake 01] provides theoretical proof that both robot pose z, and landmark positions p; can be
determined accurately (down to the initial pose uncertainty with respect to a given global frame of
reference) using relative robot-landmark distance measures.

Based on theoretical considerations, [Dissanayake 01] presents a proof that both the robot
pose and the position of all landmarks can be completely and accurately determined (down
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to the initial pose uncertainty with respect to a given global frame of reference) given only
such relative distance measurements. [Dissanayake 01] validates the theoretical claims in a
practical experiment using a radar sensor mounted on an off-road car and special reflectors
as landmarks. In contrast, the approach of [Andrade-Cetto 01] is based on natural, visual
landmarks. The presented approach adds some precautions against dynamic changes in
the environment, as each landmark is annotated with an ezistence state quantifying the
frequency and stability of the landmark recognition. Using an exponential decay law,
vanished or unstable landmarks with a low existence state are eventually deleted from the
feature based map, while newly detected landmarks are incorporated.

More recently, research effort has focused on computational improvements for kalman-
based localization techniques. In order to reduce the complexity from O(n?), where n is
the number of all known landmarks, several researchers have proposed to exploit locality
of landmark groups and restrict the application of the kalman filter to nearby landmarks.
[Guivant 01] considers the special, block-diagonal form of the kalman covariance matrices
and presents a new ‘compressed kalman-filter’ that reduces the computational require-
ments to O(n?), where n, is the number of landmarks in the local area around the robot.
[Knight 01] approaches the complexity problem by postponing full matrix updates until
the robot has sufficient computational time available and updates a constant-sized data
set based on current measurements in the meantime.

3.1.2 Topological Maps

The different metrical map types presented in the last section support precise robot lo-
calization in a global frame of reference and accurate path planning. Unfortunately, the
highly detailed world representation requires a lot of memory space and leads to algorithms
with high computational demands. Also, the incorporation of new sensor information de-
pends highly on the quality and accuracy of the current position estimate. If the robot’s
pose estimate is bad during a map update or if incorrectly sensed or outdated information
is inserted without precaution, the metrical world map can become seriously corrupted.
These properties limit the scalability of purely metrical mapping techniques [Brooks 87].

Motivated by these drawbacks, researchers aiming at robust, large scale navigation have
started early to look at the topological type of world model, which represents the envi-
ronment in a more compact, qualitative fashion. Topological approaches focus on repre-
senting navigation-relevant places and their connections on an abstract level rather than
the exact metrical layout of the surroundings. Thus, imprecise localization is less of a
problem for topological approaches and algorithms can run faster because they have to
cope with much less data.

Topological maps commonly use graphs as underlying data structure. Graph nodes iden-
tify locations of interest and their characteristical features, while knowledge about travel
between nodes is encoded in the connecting graph edges. Analogous to definition 3.1,
definition 3.2 tries to clarify what is considered a topological map in the context of this
thesis.

Definition 3.2 A map is considered to be topological, if it exhibits the following two
characteristics:
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e The map explicitly models locations having navigational significance and omits places
that have not.

e The stored information is too abstract to fully support local navigational capabilities
such as obstacle avoidance or trajectory generation.

Apart from robot navigation, topological maps are also interesting from the perspective
of cognitive science, as findings from psychology indicate the presence of similar maps in
higher vertebrates [Chown 95] [Steck 99]. Therefore, a body of research on topological
maps already exists in this area from which roboticists can draw some inspiration. Inter-
estingly, researchers from psychology have also started to use robots in order to test the
plausibility of new hypotheses about how animals develop navigational competences. This
interdisciplinary area of ‘developmental robotics’ has already obtained interesting results
[Lungarella 03].

An influential, early topological mapping procedure is presented in a series of papers by
Kupiers and Byun [Kuipers 91] [Kuipers 00]. Spatial knowledge is modeled as a hierarchy
of increasingly abstract and powerful representations, called the Spatial Semantic Hierar-
chy (SSH). The lowest level of the SSH consists of distinctive states, which are isolated
fixed-points of hill-climbing control laws available to a robot. This property guarantees
that the robot can ‘home-in’ on the distinctive location using the appropriate control law
and thus allows the compensation of positional errors upon arrival at a distinctive state.
Travel between states can be effected by a sequence of different control laws, which is
abstracted to single travel actions. The recognizability of distinctive states is verified us-
ing a rehearsal procedure [Remolina 04] and appropriate signatures for their sensor-based
detection are learned automatically [Kuipers 02]. Then, a topological map is created
using stable distinctive states as graph vertices and the corresponding travel actions as
topological edges.

The success of topological navigation techniques depends largely on the reliable detection
of proximity to stored topological nodes. Since this issue of place recognition is so impor-
tant (see [Duckett 00] for a comparison of various landmark detection techniques), most
authors opt to use an approach similar to kuiper’s distinctive states and place map vertices
at locations easy to detect and ‘home-in’ to. Some researchers select suitable places man-
ually and use for example wall corners or corridor intersections as distinctive locations for
graph nodes [Matari¢ 92| [Kuipers 91]. This of course restricts the applicability of their
navigation strategies to surroundings that exhibit such configurations.

To avoid this problem, other scientists let the robot decide on its own about what consti-
tutes a suitable place. This decision is based on an appropriate measure of distinctiveness.
For example, the method presented in [Nehmzow 00] uses sonar sensor readings as char-
acteristical place fingerprints and inserts new topological nodes whenever the similarity
of the current sensor impression to all known signatures drops below a preset thresh-
old. Similarity is calculated using a Reduced Coulomb Energy (RCE) classifier, which in
contrast to other popular classification techniques such as self-organizing maps, has the
capability to grow on demand and thus incorporate new place signatures without limit.
Upon detection of a known place, a centering behavior is activated, which tries to mini-
mize any residual differences between the place signature and the current sonar readings
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by moving the robot toward the place center. This technique corresponds directly to the
hill-climbing control laws presented by [Kuipers 00].

Another approach which selects suitable topological nodes autonomously based on their
distinctiveness is presented by Zimmer [Zimmer 96]. Here, an adaptive neural network is
used in which each cell represents a situation consisting of odometry position and current
sensor impressions. New places are added to the network if the difference between the
current situation and its closest match exceeds some threshold. This approach simultane-
ously guarantees the addition of new places with sufficiently distinctive sensor data and
establishes an upper bound on the metrical distance between nodes, as the node position
itself is part of the place signature. [Yamauchi 96] even goes a step further and reduces
the place signature only to its metrical position. This precludes any sensor-based homing
behavior and thus requires another means for correcting positional errors, but relieves the
robot from interpreting exterioceptive sensors for the purposes of topological navigation
altogether.

Aiming at a biologically plausible navigation method, [Franz 98] and [Franz 00] propose
a view based algorithm where topological places are identified using a wvisual fingerprint
obtained by an omnidirectional camera. Whenever the current visual fingerprint is suffi-
ciently distinct from the last recorded one, a new place node is instantiated and connected
to the last node via a new edge. Exploration is conducted by driving in the direction of the
angle bisector of the current nodes’ two edges having the largest opening angle. The con-
structed topological map consists of nodes defined by the characteristic visual fingerprint
and edges only defined by their exit angles. Upon reaching a known node, a visual homing
strategy is initiated to minimize positional drift. This approach exhibits strong parallels
to some navigational capabilities observed with desert ants [Lambrinos 00] [Wehner 03],
which have been found to home in onto their nest entrance using approximately omnidi-
rectional visual cues. Unfortunately, the proposed approach cannot cope with the problem
of perceptual aliasing, which occurs whenever two distinct places have identical sensor sig-
natures. If this happens, a erroneous transition to the place already stored in memory is
detected and inserted into the world model.

3.1.2.1 Probabilistic Approaches

The problem of perceptual aliasing and erroneous place recognition has been identified as
a key challenge for topological navigation approaches. One obvious possibility to improve
the robustness against such errors is to increase the discriminative power of the robot
sensors. [Kortenkamp 94] presents one of the first methods aiming in this direction. The
publication describes a fusion algorithm which combines sonar readings with visual cues
using a simple Bayesian network. Experiments in indoor environment demonstrate that
this multi-modal place recognition approach can significantly improve recognition rates
of distinct places. However, as persuasively argued in [Nehmzow 00], more sensors can
only reduce perceptual aliasing, but never eliminate it entirely. After all, there really are
places that look similar, even to humans.

Another strategy to cope with perceptual aliasing is to accept the fact that some topo-
logical places cannot be distinguished from each other, but try to use previous positional
knowledge to remain localized even if perceptual aliasing occurs. To implement this, sev-
eral researchers have proposed to use a probabilistic model of the robot’s place belief
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state, i.e. to record separately for each place how strongly the robot currently believes
to be there. Upon receiving new sensor information, the belief state can be adapted by
increasing the probability of matching nodes and decreasing the others. A key aspect of
this approach is that the probability adaption is also conditioned on the previous belief
state. This allows to transfer past (more exact) positional knowledge over to ambigu-
ous situations. With this model, a navigation system can gradually increase its certainty
about where it is over time by integrating several subsequent place detections. At the
same time, information about the current quality of localization is retained and tempo-
rary confusion due to ambiguous situations (where multiple nodes have high probability)
can be overcome again later.

[Vale 05] presents such a probabilistic topological navigation system that employs vision
as primary sensor for place recognition. Formally, the task of localization is modeled as
a partially observable Markov decision process (POMDP). If perceptual aliasing occurs,
the POMDP model eliminates false place hypotheses based on its previous belief state
and potentially unlikely place transitions. If this is not sufficient, the belief state becomes
ambiguous, but can be recovered with future correct place recognitions. In addition to
this probabilistic model, [Vale 05] allows the robot to choose between a whole range of
different visual features for the place signature in order to select the most distinctive
features at each location.

Another topological approach using POMDPs is presented in [Tapus 05]. Place signatures
are constructed from distinctive color patches and vertical edges recorded by an omnidirec-
tional vision system and corners detected by laser range finders. All found salient features
are represented as a signature string, or ‘fingerprint’ of a topological node. Similarity
of different fingerprints is estimated by applying string matching algorithms originally
developed for DNA sequence analysis to the place fingerprints. Based on the currently
sensed fingerprint and its similarity measures, the robot’s place belief state is updated
using the probabilistic POMDP model. To extend the topological map, new nodes are
inserted whenever the place signature is sufficiently distinct to already stored nodes and
the belief state is unambiguous. This prevents the robot from adding new topological
nodes in situations where its own position is unclear.

A hidden Markov model for probabilistic place recognition is formulated in [Filliat 02].
This work explicitly distinguishes between topological relocalization within a known topo-
logical map and the task of topological mapping, that takes place whenever the robot
explores unknown territory. If the probability of being inside an already mapped area is
high (estimated by summing the belief state probability values of all nodes and thresh-
olding), a multi-hypothesis localization model similar to the already mentioned POMDPs
is used for global localization. Otherwise, it is assumed that the robot is exploring, and a
single-hypothesis approach is adopted, that assigns the robots place to the best matching
signature in the vicinity of the last position. If the best match is too bad, a new node
is created. Filiat et. al. state that this double-algorithm strategy efficiently copes with
the problem to decide whether localization is ambiguous because of perceptual aliasing or
because the robot has indeed left the known territory. While the latter case requires the
addition of new topological nodes, such an action is not warranted in the first case.

The focus of Yairi et al. [Yairi 02] is placed on map building rather than place recognition.
Their approach tries to derive a consistent topological map from a series of action /
observation data pairs obtained during an exploration phase. Places are initially created
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through k-means clustering of sensor data, thus based purely on signature distinctiveness.
As a result, perceptually aliased places are erroneously represented by a single, so-called
compound state. In order to fix this, three entropy criterions are computed for each
node quantifying the uncertainty of which state transitions will occur upon execution of
a driving action. Large entropies are seen as an indication for a compound state and
the corresponding place node is split into two places so that the entropy criterions are
minimized. An indoor experiment validates that the proposed clustering and splitting
approach can generate a topological map in which only distinct topological nodes remain.

3.1.3 Hybrid Maps

Recently, many researchers have proposed to attack the problems of autonomous mapping,
localization and navigation using combinations of the metrical and topological method-
ologies presented in the last two sections. Generally, these hybrid approaches are designed
to combine the benefits of both representational forms, ideally allowing localization and
map building with the high precision of metrical maps while retaining the computational
tractability and compactness of topological data structures.

When trying to classify the techniques found in literature, two main types of hybrid map-
ping strategies can be distinguished. One type is characterized by the use of abstraction.
This class of approaches typically constructs a metrical map of the (local or global) envi-
ronment as a basis, and then abstracts this map in order to create a compact topological
representation. One of the benefits of this abstraction is that it allows more efficient
planning of an approximate path to a given goal location than a detailed metrical map.
However, the metrical map must often be kept for relocalization and obstacle avoidance
purposes.

The other class of hybrid mapping methods does not use abstraction to derive one map
type from another, but arranges the two map methodologies in a hierarchical fashion.
This is accomplished by creating several local metrical maps with a limited scale each and
tying them together using a global topological map (figure 3.6). This approach elegantly
uses the classical divide-and-conquer paradigm to address the scalability problems that are
inherent in large metrical maps. Also, it prevents errors incurred during metrical mapping
from spreading over the entire mapped area. However, one also has to pay a price for the
segmented map structure, as information contained in partially overlapping local maps
cannot be used to enforce global consistency. This can lead to increased uncertainty for
each local map, especially if they are closely spaced.
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Figure 3.6: Schematics of a hierarchical hybrid map
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In the following, some prominent abstraction based and hierarchical hybrid mapping
strategies are presented.

Abstraction-Based Hybrid Maps

It is possible to construct a topological map purely based on the abstraction of immediate
metrical range measurements that describe the local vicinity. [Choset 01] advocates the
Generalized Voroni Graph (GVG) as a suitable abstraction, capturing the topology of
the free space in the mapped environment, yet avoiding its extensive metrical modeling.
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used for GVG construction [Choset 96] a generalized voronoi graph [Choset 96]

The GVG is defined as the set of points in free metrical space equidistant to (at least) two
obstacles. Formally, given a distance function d; which measures the distance of the point
x to the closest point on obstacle C;: d;(x) = minee.,|r — c|, a GVG edge is determined
by two obstacles C; and C; as the set

F;j ={x: di(z) = d;(z) < dp(z) such that <7 d;(x) # 7d;(z)}, (3.2)

where dp,(x) denotes the distance to any third obstacle C},, and 7d;(z) the gradient of d;(x)
(see figure 3.7). Furthermore, the end points of a GVG edge F;; are termed boundary
points for d;(z) = d;(z) = 0 and meet points for d;(x) = d;(z) = dj(x) with at least
one h (see figure 3.8). [Choset 01] presents control laws that can be used to drive toward
the generalized voroni graph from an arbitrary metrical position, traverse GVG edges and
home in on GVG meet points. These control laws bear strong resemblance with those
used by Kuipers for distinctive states - which is not surprising, as the underlying idea is
essentially the same. [Choset 01] also introduces four stable features that can be used for
topological relocalization by identifying the meet point the robot is currently at. These
features are

1. the distance d to the closest obstacle,
2. the number of neighboring boundary points,
3. the number of edges connected to the meet point and as final criterion,

4. the relative departure angles of these edges.
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If after arriving at an unknown meet point and matching these four features, more than
one potential candidate remains, the robot proceeds to traverse another GVG edge and
then reduces the current candidate set by intersecting it with the neighbors of the new
candidates calculated at the target meet point. Of course, this strategy can fail, too, for
hyper-symmetrical environments (where all meet points look the same), but this cannot
be circumvented by topological approaches.

[Zwynsvoorde 00] presents another mapping technique based on the generalized voroni
graph. The innovation of this work lies mainly in the used sensor model. Instead of using
sonar sensors as done by [Choset 01], [Zwynsvoorde 00] employs a standard 180° planar
laser scanner. With the increased angular resolution, it becomes possible to determine
areas that could not be sensed completely and thus warrant further exploration. By
adding virtual GVG edges and meet points, these explorative areas are incorporated in
the topological map during mapping and can be queried for exploration strategies.

A good example of a hybrid mapping strategy that derives a voroni-graph based topo-
logical map through abstraction of a long-lived, complete metrical map is presented in
[Thrun 98a]. Here, topological map building is initiated by thresholding an occupancy
grid map built using Bayesian probability techniques. Then, the voroni diagram is built
by selecting all free grid cells, whose two nearest occupied grid cells (the base points)
are equidistant. Cells on the voroni diagram are termed critical points, if the base point
distance is a local minimum. Lines between critical points and their base points divide
metrical space into separate topological regions at locally narrow passages. From this
regional decomposition, a topological graph can be generated easily (Figure 3.9 shows an

example of these steps).
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Figure 3.9: Steps in the topological abstraction scheme of [Thrun 98a]
a) Original thresholded occupancy map. b) Overlaid voroni diagram c) critical points d) critical lines e)
topological regions f) resulting topological graph

After construction, this graph can be used for quick path planning without resorting to
the detailed, underlying metrical map. During travel however, the arrival at a topological
node can only be detected by using localization techniques based on the detailed map,
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since the topological nodes are only characterized by their spatial position in map’s frame
of reference. Thus, while the topological representation improves path planning efficiency,
this hybrid solution does not address the scalability issues faced by global metrical map-
ping techniques.

Hierarchical Hybrid Maps

[Tomatis 03] presents a technique that hierarchically combines a global topological map
with local metrical feature maps for mapping and navigation in indoor environments.
On the global level, a topological map is constructed which contains intermediate nodes
spanning the topological graph, leafs that signify metrical places and corner lists on the
links between nodes (see fig 3.10). The corners can be extracted easily from the data of a
360° laser scanner and serve as landmarks for a POMDP approach (see 3.1.2.1) performing
localization on the topological scale.

(a)
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Figure 3.10: Hierarchical hybrid map of [Tomatis 03]
a) shows a portion of a hallway with extracted corner and opening features. b) represents the resulting
topological map with nodes and corner landmarks. Open arches either lead to metrical places or other
hallways.

While the POMDP topological localization strategy is used while the robots travels along
map edges, the algorithm switches to a metrical method once the robot has arrived at a
leaf ‘place’. The local map stored in this leaf is a feature map as introduced in section
3.1.1.2 and is constructed using lines extracted from the 360° laser scan. For each line
segment found in the scan, an ‘infinite line feature’ is generated that is described by the
angle of the perpendicular to the line and its length. The local feature map can be used
for localization by modeling all feature parameters and the current robot pose as the state
vector of an extended kalman filter and using a standard EKF based SLAM algorithm
(see sec. 3.1.1.2). With the use of this local metrical representation, the robot can travel
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freely in the vicinity of the leaf node, performing navigational tasks with high metrical
precision.

During exploration, a strategy must be defined that decides when to create a topological
node and when to switch to the metrical paradigm. [Tomatis 03] arguments that for
office scenarios, high precision is mainly required in rooms. So, it is sufficient to set up
topological nodes for each opening detected in a hallway (a narrow and elongated space
in the laser scan) and create leaf places once the robot has entered a room (a wider, more
quadratic space).

Unfortunately, this strategy, along with the use of line features for the metrical feature
map, is strongly tuned toward typical indoor environments. Extending this approach to
more unstructured off-road scenarios therefore appears rather complicated.

A more general hybrid mapping framework not geared toward office environments is the
ATLAS framework presented by [Bosse 03]. The framework’s main concept is to connect
local metrical maps via a global topological adjacency graph. However, the exact method
used for metric mapping is not directly dictated by the framework. Although Bosse et. al.
propose to use a feature based map containing point and line features, the only hard
requirements for the metrical component are the capability to perform localization and
map matching. While the need for localization is obvious, the map matching capability
that identifies common features and estimates the similarity of two metric maps is required
to detect loops during exploration.

Once a suitable local map representation is selected, the robot builds such a map using
SLAM until the map complexity (f.e. number of features) exceeds a certain threshold.
Then, a new local map is initialized at the estimated current robot position, and a topo-
logical edge is created that links the old and new metrical frames. [Bosse 03] proposes
to store the available information about the current positional uncertainty in this edge,
effectively annotating each edge with a covariance matrix expressing uncertainties in rel-
ative location and orientation between the two local maps. This information can be used
for path planning in the topological map: By choosing the magnitude of the uncertainties
(the determinants of the covariance matrices) as edge traversal costs, the dijkstra path
planning algorithm can be used to plan the most precise paths from a start map to each
local map node.

If map matching detects large similarities between the current map frame and an already
existing local map within the current positional uncertainty bounds, a loop is assumed,
and the best alignment of both map frames is computed using a least-squares fit of all
matching features. Then, the existing map is updated with the information extracted
from the other, which is subsequently discarded, and the topological loop is closed.

The ATLAS framework supports multi-hypothesis position tracking like the POMDP
approaches, but uses a unique strategy to achieve this. Fach local map frame can hold
one hypothesis about the robots current pose. If this hypothesis is supported over several
time steps with sensor data corresponding to the information stored in the local map,
the hypothesis can become mature. The best mature hypothesis is then reported as the
current robot pose. If the last mature hypothesis fails to be supported well by current
sensor data, a new local map is created as the robot has probably moved into a new and
unexplored area of the environment.
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While ATLAS does not use any assumptions on the environmental characteristics such
as the approach of [Tomatis 03], it relies more strongly on metrical information. ATLAS’
performance depends on the accuracy of the positional uncertainty estimate both for path
planning and loop closing. This imposes a strong constraint on the minimal acceptable
quality of the metrical mapping components.

Two further hybrid mapping algorithms are presented in [Lisien 03] and [Estrada 05].
Both propose to use feature maps and the extended kalman filtering approach on the
local level for precise metrical navigation. On the topological scale, [Lisien 03] suggests
to employ the generalized voroni graph (GVG) already presented in conjunction with the
abstraction based hybrid maps and anchor the metrical maps to the meet points of the
GVG. The approach is somewhat incomplete as important issues such as loop closure
are not addressed, and experimental validation is simplified through the use of artificial
landmarks.

[Estrada 05] does not use a voroni graph to structure the arrangement of local maps,
but restricts the number of allowed features per map similar to [Bosse 03], prompting
the creation of new maps in regular spatial intervals for uniformly featured environments.
The proposed algorithm’s main strength is efficient loop closing. If a loop closure is
triggered by a good match between an older and the current local map, the algorithm first
constructs a global correlation matrix from all involved local map correlation matrices
that have been computed previously by the extended kalman filter. Since the local maps
are not correlated with each other, the global correlation matrix P is block-diagonal. P
can then be used in a nonlinear constrained optimization that enforces the global metrical
consistency in the closed loop, while the diagonality property allows the efficient solution
of the optimization problem with linear complexity in the number of involved local maps.

3.2 Analysis of Map Suitability

While the different mapping algorithms presented in the last section vary substantially in
their level of sophistication and the resulting map’s quality, their exposition still allows
to make some principal statements about which kind of map is better suited for different
navigation-relevant applications (such as localization or path planning). The underlying
map structure also has a large influence on the choice of algorithms that can be used.
Table 3.1 summarizes these common characteristics.

With the survey of different mapping approaches as background, the question can be
approached which of the presented map paradigms is the best choice for the envisioned
deliberative off-road navigation layer. As this layer constitutes the bridge between the
behavior-based piloting layer and the operation environment, the decision is influenced by
the properties of both sides.

The target off-road environment is characterized mainly by its large spatial extent, its
lack of structure and a complex three-dimensional layout. The large size of the opera-
tion area weights heavily against the construction of a single, dense metrical map such as
an occupancy grid or elevation map, as this would require vast amounts of data storage
and processing power. Also, the construction and maintenance of such a representation
requires accurate knowledge of the robot’s location and, to ensure map consistency, tra-
versability estimates that are viewpoint independent. Both requirements appear to be
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Map Type Data Structure Primary Application Prominent Algorithms
Occupancy Grids 2D array Indoor Trajectory Planning A* Markov, MCL
Localization [Thrun 98b]
Elevation Maps 2D array Outdoor Trajectory Planning  A* D* Extended Elev. Maps
[Ferguson 04] [Pfaff 05]
Basic Feature Maps kD-Tree Localization Scan-Matching, Pixel-SLAM
(Point Clouds) [Besl 92] [Brennecke 03]
Landmark Maps List Localization EKF-SLAM
[Dissanayake 01]
Topological Map Graph Place Recognition POMDPs
Path Planning [Kuipers 00] [Vale 05]
Abstracted Hybrid Maps Graph Path Planning Voroni Graphs, GVG
Localization [Choset 01] [Thrun 96a]
Hierarchical Hybrid Maps Graph + Path Planning POMDPs + EKF-SLAM
Feature Lists Localization [Tomatis 03] [Bosse 03]

Table 3.1: Application domains for different map variants

difficult to ensure in highly vegetated areas that can exhibit large odometric drift and
strong variations in sensor penetration.

Feature-based mapping approaches that rely upon the extraction of distinct landmarks
can also be expected to face large difficulties once the robot leaves park-like environments
with spatially well defined landmarks such as single trees. In more cluttered areas, the
high variability of natural vegetation will pose problems for landmark recognition tasks,
and one cannot simply rely on the presence of regular and easier detectable man-made
structures. In contrast to this, mapping approaches using simple features such as point
clouds sidestep the landmark recognition problem. However, the large amount of basic
features needed for mapping again limits scalability and threatens to cause a substantial
performance loss on the robotic system.

The performance issues that plague large metrical maps are no problem for topological
representations. The ability to set up map nodes at arbitrary positions can be used
to focus mapping on places that require navigational decisions, so that map complexity
scales with the navigational complexity of the environment instead of its metrical size.
The critical issue of topological place recognition is simplified substantially for the target
outdoor scenario, thanks to the possibility of using absolute position sensors such as GPS.
If the map nodes are spaced sufficiently far apart from each other, this information alone
is enough to unambiguously identify the nearest topological node.

However, the topological navigation scheme also has drawbacks. For one, it is too abstract
to directly support important local tasks like obstacle avoidance or calculating a fine-
grained trajectory. This may very well explain the apparent lack of published topological
navigation approaches for outdoor scenarios. Luckily, it is not an overly serious drawback
for the two-layered architecture considered in the scope of this thesis. With this partioning
of concerns, local navigation is within the domain of the behavior-based piloting layer,
which deals with trajectory planning and obstacle avoidance in a mostly sensor driven,
behavior-based fashion.

A more serious problem arises for the task of exploration. In order to select promising
directions in which to extend the current topological map, the mapping component must
have access to traversability estimates for terrain that is not yet covered by a topological
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node or edge. In contrast to dense structures such as elevation maps, which can be easily
queried about new trajectories, a purely topological map does not provide any information
outside the realm of its constituent connections. Thus, traversability-driven exploration
is a difficult problem when using a topological map.

One option to approach this dilemma is presented by the hierarchical hybrid maps covered
at the end of the survey section. By instantiating a local metrical map containing traver-
sability information at each topological node, it becomes possible to estimate the quality
of new connections in the vicinity of existing nodes, without simultaneously becoming
dependant on accurate global localization as systems handling one large global metrical
map.

Table 3.2 summarizes the discussed criteria relevant for the selection of a suitable map
representation in the scope of this thesis. As can be seen, the topological map types
seem to be a better overall choice than the metrical and feature-based map type. Due to
the improved support of explorative operations, the hierarchical hybrid map type thereby
holds a slight advantage over the purely topological map.

Capability Map Suitability
Basic Landmark Abstracted  Hierarchical
Grid  Feature Feature Topological Hybrid Hybrid
Supports path planning + - - + + +
Supports large scale mapping - - + + - +
Tolerant to large env. variations + + - + 1 1
Can incorporate 3D information - + + + 1 1
Tolerant to inaccurate localization - - + + - +
Ability to support exploration + - - - - +

1 Depends on underlying metrical map structure

Table 3.2: Suitability of different map types for the off-road application scenario

3.3 A Hybrid Map for Off-Road Navigation

The last section has presented an overview of the different mapping paradigms and dis-
cussed their principal suitability for the task at hand. Based on this analysis, the hier-
archical metric-topological map type appears to provide the best basis for successfully
extending the navigational capabilities of a behavior-based off-road vehicle.

This concept is now developed further and expanded into a formal definition of the hier-
archical hybrid map that will be used thorough this thesis. Initially, the definition will be
restricted to the high-level topological component, as this is sufficient for the main focus
of this chapter, i.e. navigation within a given map. The map model will be augmented
with local metrical maps for exploration tasks in the next chapter.

The following design decisions have been made during the specification of the topological
map component:

1. The absolute metrical node position shall be used for place recognition.

2. All stored map data shall retain full three dimensional information.
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3. Map edges shall be directed.
4. Nodes and edges shall be typed.

Item 1 allows the abstraction from self-localization issues that are not focus of this thesis.
Instead, it is assumed that navigation-relevant topological nodes are spaced sufficiently
far apart so that they can be distinguished unambiguously by the global position attribute
available through the onboard GPS system.

Item 2 is a necessary precondition for modeling complex environments containing traversable
routes on multiple levels, such as territory with bridges or tunnels. Such elements are not
uncommon in surveillance or predefined route following scenarios, and therefore the map
should be designed to support three dimensional environments.

The choice of directed map edges in item 3 is very important, because it allows the
representation of asymmetrical traversal costs between two nodes, depending on traversal
direction. Such asymmetries are widespread for outdoor areas. For example, one can
consider sloped terrain, where downhill travel is energetically much cheaper than driving
in the opposite direction. Additionally, the traversability of many naturally occurring
obstacles such as ramps, steps or underbrush depends on the direction of an attempted
traversal.

Finally, the design decision in item 4 has been made so that it becomes possible to explic-
itly distinguish between normal, hypothetical and untraversable elements. This eliminates
the necessity to encode these situation with unpleasant helper constructions, as for ex-
ample modeling blocked cells in digital elevation maps by inserting an unrealistic, ‘magic’
height value.

3.3.1 Map Formalization

The design decisions presented in the last section provide a solid foundation for the formal
definition of the topological map, its constituent map nodes and edges and related matter
such as paths.

The global topological map M is modeled as a simple container according to definition
3.3.

Definition 3.3 (Topological Map) A topological map M is defined as a pair M =
(N, E), where

e N is a set of map nodes with N = {ny,na,...}

e F is a set of map edges with E = {ej,es,...}

The map nodes n; specify world locations which are relevant for robot navigation. In
general, these nodes signify locations where the robot’s navigational behavior can change.
This encompasses junctions, at which the robot can update the direction it is currently
approaching, but nodes might also be placed where the obstacle configuration changes
significantly and thus adaption of the obstacle avoidance strategies is required. Nodes
consist of a position and a type attribute as follows.
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Definition 3.4 (Map Node) A map node n € N is defined as an attribute pair n =
(p,t), where

e 1 specifies the three-dimensional node position using the earth centered earth fixed
coordinate system ECS

e ¢ specifies the node type with t € {speculative, accessible}.

The semantical meaning of the two different node type is as follows: Speculative nodes have
not yet been approached and therefore it is not necessarily clear whether their position can
actually be reached at all. Instead, the speculative node might lie inside an impassable
obstacle which has been overlooked when the node was initially placed. In contrast to
this, nodes with accessible type have been visited at least once, and thus, their position p’
can indeed be reached.

Coming to the definition of the map edges, each edge e; expresses a belief or accumulated
evidence about the connectivity between two map nodes. As motivated previously, map
edges in this thesis are directed and self-loops (edges with the same start and end node) are
explicitly forbidden as they carry no navigation-relevant information. Also, edges contain
a type attribute analogous to nodes, and a set of annotations, which will be used to store
cost information later.

Definition 3.5 (Map Edge) A map edge e € E is a tuple e = ((n,n'),t,\), where
e (n,n') is an ordered pair of map nodes with n,n’ € N An #n'.
e { specifies the edge type with t € {speculative,traversable,untraversable}

e A is a set of annotations containing travel cost information. The annotation set
will be defined further in section 3.5.5.

Two notational conventions are introduced to simplify the following exposition. For one,
n and n' are subsequently termed the edge’s start and end node and are addressed by
e.n and e.n’. Furthermore, the expression (n,n') € E will be used with the meaning of
Fia.((n,n'),t,A) € E.

The semantical meanings of the three different edge types are similar to those of the node
types. A speculative edge has not yet been traversed and it is thus not known with certainty
whether the edge is indeed traversable, or how costly such a traversal is. Traversable edges,
on the other hand, have been successfully traversed at least once and are thus known to
allow travel from the start to the end node. Not surprisingly, the untraversable type signals
that the edge cannot be successfully traversed and thus should not be considered as a valid
alternative for further exploration or path planning steps.

The annotation set A is the final constituent of an edge and is related to the cost measure
required for path planning. The description of the actual contents and layout of this set
is not directly relevant for the formal definition of the edges and is thus postponed until
section 3.5.5.

Agreeing with general convention, a path in the map M is defined as a list of consecutive
map edges:



3.4. Basic Map Functionality 43

Definition 3.6 (Path) A path P is defined as a list of map edges (eq,é€1,...,€;) for
which the following conditions hold:

ecP = eck
0<i<j = en =eqn

—~~
W W

3.3.2 Map Visualization Conventions

In the remainder of the thesis, example images generated by the visualization tool de-
scribed in appendix A will be used frequently to supplement the textual explanation of
map related topics. This section introduces some conventions which are valid for all of
these images.

Figure 3.11 shows the representation of map nodes as spheres placed at their metrical
position p. Map edges are visualized by straight arrows running from their respective
start to their end nodes. Edges running in different directions are offset from each other
to increase viewability, but this does not hold any navigational significance. Optionally,
both nodes and edges can be superscribed by a textual name used for reference in the
image description text. The primary colors red, green and blue are used to convey type
information. The color coding scheme is listed in table 3.3.

Color Node Type Edge Type

Red (unused)  untraversable
Green  accessible traversable
Blue speculative speculative
Figure 3.11: Table 3.3:
Example of topological map visualization Color scheme for map visualization

3.4 Basic Map Functionality

After introducing the topological map, the exposition continues with the basic function-
ality required to employ the map for navigation. This section describes how a path
P = (eg,e1,...,€;) (as generated by path planning described later in section 3.6) can
be translated into appropriate motion commands for the pilot layer. Also, the detec-
tion of successful and unsuccessful traversal attempts is explained in detail, along with a
description of the corresponding map updates prompted by these events.

It should be noted that the design of these functionalities is not as trivial as it might seem
at first glance. In order to function reliably, special care has to be taken to make these
operations both robust against inaccurate position information and tolerant against the
pilot’s black-box behavior when it responds to a motion command by the navigator.
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3.4.1 Generation of Motion Commands

Each path traversal task that is to be carried out by the robot is a chain of subsequent
edge traversal tasks. As the metrical positions of all map nodes are known, the simplest
way to communicate these edge traversal tasks to the robot’s pilot over the available
interfaces (see sec. 2.2.2) is to take the position p’ of the current edge’s end node e;.n’
and to activate the Approach Target Position behavior of the pilot (figure 3.12a). Once
the robot has arrived at that position, the position of the next edge’s end node e; ;.n’
can be set as target. Of course, the ECS node position must be converted into the pilot’s

WCS system prior to sending the coordinates by applying the pose transformation matrix

WCs
Mgeg .

(a) Single motion command (b) Resulting trajectory

Figure 3.12: Path traversal using the Approach Target Position behavior
(a) Target position is set to current edge’s end node position.
(b) Steep turns lead to large steering corrections.

Unfortunately, implementing path traversal by simply approaching a sequence of end node
positions causes the robot to perform extensive turning maneuvers every time it reaches
an intermediate node and receives a new goal lying in another direction. This behavior can
be observed well in figure 3.12b, which has been produced by tracing the robots trajectory
while it traveled along the nodes Ny, Ny, No, N3, Ny.

The reason for these large deviations is obviously the fact that the pilot approaches the
target position using the most direct route and does not take the heading toward the
next goal into account until it has finished approaching the current one. This is especially
problematic as the robot is distinctly non-holonomic.

In order to reduce the swaying, it is necessary to let the robot orient itself earlier toward
the goal that will become active after the current one. A suitable interface to communicate
such requests is the Approach Target Pose behavior, which causes the pilot to approach
a certain WCS position while simultaneously trying to attain a given WCS yaw angle.
As the navigator works in the ECS coordinate system, a suitable three-dimensional ECS
target pose needs to be constructed, transformed using the conversion matrix M2 and
then supplied to the pilot. The ECS target pose can be constructed using the position
of the current target node e;.n’.p" and the heading h from the current to the next target
node given by

h = eir1.n . p—e.n.p (3.5)
To complete the specification of the target pose, an additional constraint on the z-axis
of the target pose is needed. After recalling that the WCS yaw-angle is interpreted as
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a rotation around the WCS z-axis, one can argue that the selection of the WCS z-axis
image in ECS coordinates

U, = (Mg (0,2), MEGS (1,2), MEES (2,2)) (3.6)

as the ECS target pose z-axis results in WCS roll and pitch angles of 0 after coordinate-
system transformation and thus minimizes distortion of the yaw-angle.

With these specification, the full three-dimensional ECS target pose can be computed
using the SetupCSWithZAxis function introduced in 2.3.3 by invoking SetupCSWithZA-
xis(e;.n'.p, fz, \ITz) After converting the resulting matrix into a WCS pose, it can be used
as input for the Approach Target Pose behavior for all edge traversals except the last one.
As the last edge traversal command does not have a successor node required to compute

-

h, it must be conveyed to the Approach Target Position behavior instead.

(a) Single motion command (b) Resulting trajectory

Figure 3.13: Path traversal using the Approach Target Pose behavior
(a) Target pose orientation points directly toward next goal.
(b) Large steering corrections now occur mainly before steep turns.

Figure 3.13 shows the effects of the updated path traversal technique. Unfortunately, it
can still be observed that the pilot deviates widely from what a human would consider
an ‘optimal’ trajectory. It appears that by specifying the target pose with an orienta-
tion pointing directly toward the next goal, the pilot is forced to perform the steering
corrections during the approach to the current goal too early and too aggressively.

Thus, a third variant to translate path traversal tasks into motion commands has been de-
veloped. This time, the target pose orientation is calculated as the angle bisector between
the direction to the current goal node and the direction to the next node. Mathematically,
this bisection vector can be computed easily using the formula

B (€ir1.0 .0 —e;n'.p) + (e;.n.p— e;_1.n'.D) (37)
5 )
(eip1.n/.p — e;_1.n'.p)
= 5 (3.8)

An example is given in figure 3.14 to illustrate the effects of the proposed computation
method for the target pose. It can be seen that the use of the angle bisector as inter-
mediate target orientation spreads the necessary steering corrections relatively uniformly
over the whole path that is to be traversed. Thus, this technique has been adopted as the
most suitable approach for translating path traversal tasks into motion commands for the
piloting sublayer.
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(a) Single motion command (b) Resulting trajectory

Figure 3.14: Path traversal using the improved Approach Target Pose behavior
(a) Target pose orientation is set half way between direction to current and direction to next goal.
(b) Large steering corrections are eliminated.

Formulation of this strategy in form of pseudo-code leads to algorithm 3. With the use of
the ApproachTargetECSPose method, the traversal of path P can be effected by calling a
sequence of ApproachTargetECSPose(e;.n.p, e;.n’.p, e;11.n'.p) functions for all valid ¢ of P
(the exception necessary for the last edge has already been discussed).

Algorithm 3: ApproachTargetECSPose(Point3D start_pos, Point3D target_pos,
Point3D next_pos)
Data: Point3D start_pos, Point3D target_pos, Point3D next_pos
Result: Let the robot approach the ECS position target_pos starting from ECS
position start_pos and obtaining a final orientation that is suitable for

continuing toward the position next_pos
Vector3D h = ”eXt—Posgstart-pos

© = SetupCSWithZAxis(target_pos, h, \172)
ApproachWCSPose (MP52 x ©)

3.4.2 Arrival Detection

The path traversal scheme presented in the last section must be able to detect the arrival
at the currently active target node in order to proceed to the next edge traversal subtask.
As the stored information usable for node recognition is limited to the global position
attribute of each node, the issue of arrival detection must rely exclusively on this data.
The task is complicated by two factors:

1. the robot’s positional information may drift substantially during target approach.

2. the behavior-based pilot may choose to approach the target inexactly, f.e. due to
nearby obstacles or steering restrictions.

These facts prevent the implementation of a node arrival detection algorithm which sim-
ply waits until the difference between robot position and target position becomes zero.
Instead, some finite sized catchment area must be defined around the target with a size
that compensates both localization drift and steering inaccuracies. As the exact values of
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these two quantities are often unknown, robustness demands to estimate their magnitude
pessimistically, easily leading to catchment areas of 5 meters or more.

One method to reduce the area’s size presents itself after analyzing the drift characteristics
of the GPS localization subsystem. As can be seen in table 3.4, the large variance of the
GPS elevation value (parallel to the WCS Z-axis by construction) contributes substantially
to the total localization drift.

Axis Std. Deviation [m]

WCS X 2.75

WCS'Y 1.89

WCS Z 5.63
Table 3.4:

Standard deviations of GPS positions in direction of the three WCS coordinate axes
Mean and standard deviation has been estimated from ~ 100000 measurements taken over a period of
28 hours using a stationary Holux GPSlim 236 GPS device [Schmitz 05].

Thus, it is possible to blank out the adverse effect of drifting elevation measurements by
using a distance metric that excludes the robot’s WCS Z position. An obvious approach
is to project both robot and target position into the WCS X-Y plane and compute the
two-dimensional, euclidean distance. In the navigator’s ECS system, this is equivalent
to calculating the shortest distance between the ECS robot position and a line running
through the target position with direction of the projected WCS Z axis ¥,. The mathe-
matical solution to this problem is easily obtained using the cross-product (figure 3.15).

+ECS Z

Figure 3.15: A WCS Z-coordinate invariant distance measure in ECS

The distance d between two ECS-points pi, p3 afger projecting thenL along the WCS Z-Axis \172 can be
calculated by observing that |V, x (p3 — p1)| = |V, ||p2 — pi|sin

The two equations

0. % (52— p1)| = |W.[|[p2 — pilsina (3.9)

d
P> — pil

lead to definition 3.7 of the projected distance between two points.
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Definition 3.7 The projected distance d(pi,p3) between two points pi, ps specified in
ECS coordinates is given by

d(p1,p3) =V, x (ps — p1) (3.11)

In the following, the term target distance is used to denote the projected distance
between robot and a target ECS position.

It is easy to implement catchment area based arrival detection by monitoring the target
distance and signaling the arrival event once the distance falls below the catchment area’s
size dgrriva- However, this intuitive approach is suboptimal in the sense that it does not
profit from situations where accurate localization information is available and the pilot
could approach the given target position much more precisely than up to the distance s.
A solution to this problem is to postpone sending the ‘arrival detected’ signal while the
target distance is less or equal to s and continues to shrink. Experimental validation has
shown that it is sensible to terminate the event postponement once the target distance has
not decreased further below the previous minimal distance for a short slack time period.
This slack time window with typical values of 300 — 600 ms is useful to make the target
arrival detection more tolerant against small correction maneuvers or localization glitches,
which can increase the target distance minutely during the approach movement. Listing
4 shows a pseudo-code implementation of this algorithm for target arrival detection with
postponement.

Algorithm 4: DetectTargetArrivalWithPostponement
Data: Point3D target, Point3D robot, float dy,,iva, int slack_time
Result: Terminates when robot has detected maximal proximity to target
bool arrived = false;
while forever do

if d(target, robot) < dyrriva and not arrived then
arrived = true;

min_dist = d(target, robot);

time = current_system_time;

end

f arrived then

if d(target, robot) < min_dist then
min_dist = d (target, robot);
time = current_system_time;

else if current_system_time - time > slack_time then
| return true;

end

o

end
end

It is important to note that this algorithm guarantees that the time between entering the
catchment area (arrived = true) and triggering the target arrival event (return true)
is finite, given the reasonable assumption that the robots velocity is either 0 or always
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remains larger than some minimal value e > (. Under these conditions, min_distance
can only decrease finitely often (lines 9-11). After the last decrease, the variable time is
not updated any more and thus the condition at line 13 is fulfilled with slack_time delay.

In conclusion, robustness to drifting localization and inaccurate steering is achieved using
an elevation independent distance metric and a catchment area around the topological
node’s position. However, if localization accuracy permits, the robot is still able to con-
verge to the precise location of the topological node despite the catchment area because
the arrival event is postponed while the robot continues to approach the topological node.

3.4.3 Relocalization of Speculative Nodes

Whenever the robot detects the arrival at a speculative topological node, its type attribute
is altered to accessible in order to record this information and remain consistent with the
semantics given in definition 3.4. However, experiments have shown that this is also a
good time to correct the speculative node’s position, if it has initially been placed too close
to (previously unknown) obstacles. In such a case, the best effort characteristics of the
pilot layer and the target arrival detection algorithm will have offset the robot from the
original position of the badly placed node toward a better reachable position within the
target catchment area. Thus, the position of the robot upon signaling the target arrival
event can be used to relocalize the speculative node.

An example of the effects obtained by this technique is depicted in figure 3.16. As can
be seen, the middle node was initially placed inside an obstacle, but has been successfully
‘pulled out’” by node relocalization. Overall, validation in both simulation and real world
experiments has shown that the proposed relocalization step substantially increases the
robustness of the whole navigation scheme against badly placed topological nodes.

(a) Before path traversal (b) After path traversal

Figure 3.16: Relocalization of speculative nodes

3.4.4 Fusion of Relocalized Nodes

Even under the assumption that all nodes in the initial map are well separated from
each other, relocalization of a speculative node may result in a situation where two or
more nodes are placed closely together. This is problematic due to several reasons. For
one, it becomes impossible to decide solely based on the current robot pose at which
node the robot is located once their spatial locations are within the inaccuracy range of
the robot’s position estimate. For another, the amount of turning required for a large
non-holonomic robot makes the traversal of very short edges difficult. Thirdly, as each
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topological node is an abstracted representation of the environment surrounding it, closely
spaced nodes contain rather redundant information that does not contribute much for the
task of efficient large scale navigation. Because of these detrimental effects, the quality
of the navigator’s topological map can be improved by joining nodes that come to lie too
close together. This can be accomplished using a node fusion algorithm.

To counteract the creation of closely packed nodes after node relocalization, it is necessary
to check for such an occurrence every time a speculative node ¢ has been moved as proposed
in section 3.4.3. In the general case, this proximity check can produce a set of nodes
M whose projected distances to t fall below a given minimal distance threshold. If M
contains at least one accessible node, the former speculative node has evidently moved into
‘known terrain’ already represented by other, established nodes. Thus, a viable strategy
to eliminate the agglomeration of nodes in this case is to select the accessible node ¢ which
is closest to t and fuse t with it. The fusion algorithm’s task is then to reconnect all
incoming and outgoing edges of ¢ to ¢, ensuring that no duplicated edges or self-loops are
created, and finally to remove ¢ from the topological map.

A different situation occurs when the set M contains no accessible nodes. In this case, the
freshly relocalized node has been placed at an accessible location in previously unknown
terrain. Therefore, it should be preserved, as it represents more definite information as
other, still speculative nodes. Consequently, the fusion algorithm should now be invoked
with ¢ as the node to fuse with and the set M as the set of nodes that are to be fused.

Algorithm 5 shows a pseudo-code implementation of the fusion algorithm that has been
developed in order to eliminate clustered nodes after node relocalization. As described,
the actual parameters given to the algorithm depend on the type of nodes in the set M. In
case an accessible node is found near the freshly relocalized node ¢, the procedure is invoked
by calling FuseNodes(c, {t}). If only speculative nodes are close, the call FuseNodes(¢, M)
is used instead.

An example application of the fusion algorithm is shown in figure 3.17. Here, the scene
from the node relocalization example is embedded into a larger context. As can be seen,
a second row of speculative nodes is located close to the three nodes from the previous
example. Because the relocalized node comes to lie closer to the speculative node in the
middle than the minimal threshold, the FuseNodes algorithm is invoked and fuses the
speculative node with the freshly relocalized one.

(a) Before node fusion (b) After node fusion

Figure 3.17: Node fusion
(a) Node relocalization has moved a node too close to another (marked yellow). (b) The accessible node
assimilates the nearby speculative node and its edge connections.
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Algorithm 5: FuseNodes(Node ¢, Nodeset M)

Data: Graph G = (N, E) // the global topological map
Data: EdgeSet C' // edges to be reconnected with t
Data: EdgeSet R // edges to be removed from E

// mark incoming edges of M either for reconnection or removal,
foreach (n,n') € E withn’ € M do
| if (n,t) € Eor n=1then R« RU (n,n’) else C — C U (n,n);
end
// reconnect unique edges and remove duplicates;
foreach (n,n') € C' do
| if (n,t) € Ethen R« RU (n,n')else E — E\ (n,n'); E «— EU (n,t);
end
E+ E\R; R 0; C « 0

// mark outgoing edges of M either for reconnection or removal;
foreach (n,n') € E withn € M do
| if n’ =t then R — RU (n,n') else C'«— C' U (n,n’);
end
// reconnect unique edges and remove duplicates;
foreach (n,n’) € C do
| if (t,n’) € E then R+« RU (n,n')else E «— E\ (n,n'); E — EU(t,n');
end
E—FE\R; N« N\ M;

3.4.5 Detection of Navigation Failures

The pilot layer cannot guarantee to actually find a traversable path to the target position
or pose requested by the navigator, even if one exists. The possible causes for such
traversal failures are manifold, but most can be traced back either to the limited local
world model used by the pilot or to the incomplete or misinterpreted sensor data available.
In one of the most common scenarios, the robot becomes trapped in a dead end extending
beyond the scope of the pilot’s world model. Thus, even if the pilot detects the dead
end after moving inside, the local memory is insufficient to contain this information long
enough to allow the robot to turn around and leave the dead end completely. Instead,
it is quite possible that the vehicle turns back again and consequently starts to oscillate,
or becomes stuck outright. Other cases of navigation failures are caused by changes in
terrain perception. Due to the uncertainty inherent in sensor data processing, a terrain
patch that appeared to be traversable from afar can easily be reevaluated as impassable
upon approach, causing the pilot to change course and possibly stray away from the goal
completely.

Possible traversal failures can be categorized into two main classes:

1. Deadlocks: The pilot cannot move toward the target position at all or only with an
unacceptably slow speed.
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2. Livelocks: The pilot can still move swiftly toward the target, but is also forced to
drive away from it again at some point, so that the robot starts to oscillate and
never arrives.

In order to build a robust navigation system capable of recovering from these unavoidable
failures, a failure detection strategy must be developed that can detect both dead- and
livelock failure types. After detection, the information must be entered into the topological
map to allow subsequent navigation commands to avoid the action that led to the failure.

The reliable detection of traversal failures is complicated by the design constraint to treat
the pilot layer as a ‘black box’ whose internal workings cannot be influenced in detail.
With this restriction, one must resort to examining the effects produced by the pilot, i.e.
the positional change of the robot relative to the target. A straightforward method to
implement failure detection within these limits is to define a timeout for each issued edge
traversal command and assume that the target can not be reached if the allotted time
expires before a successful target arrival is detected.

However, the selection of a generally applicable, absolute timeout value is problematic,
as the time needed to travel to a given position depends on many factors such as the
target distance, the maximal possible vehicle speed and the terrain difficulty on the way.
Ignoring the influence of terrain complexity for now, both distance and maximum speed
can be used to adapt the timeout value and create a more flexible failure detection rule.
Unfortunately, this rule still exhibits the unpleasant characteristics that a failure event
can be produced even while the robot is driving directly toward the target, in case it has
lost too much time negotiating an obstacle situation earlier on.

It is possible to eliminate this behavior by dropping the idea of specifying a general
timeout and instead limiting only the time during which the robot is not approaching the
goal swiftly enough. This line of thought leads to the formulation of the actual failure
detection constraint used in this thesis. Its central idea is to demand a target approach
with a minimal speed indirectly by setting a lower limit on the decrease in target distance
between two subsequent timesteps to and t;. For this, the maximal possible decrease in
target distance Ad,,,, is calculated first using the maximum possible vehicle speed v,,4
and the available time interval At = t; — tq:

Admaa: = UmaxAt (312)

A desired target distance for time t; is then computed from the target distance between
the robot position 7 and the goal position p’ at time ¢y, by subtracting a fraction s of
Adaa:

dgesirea = max (d(7(tg), p) — KAd s, 0) (3.13)

Now, for each discrete time step t; that the navigator awaits the pilot’s arrival at the
target position, the current target distance d(7(¢;), p) is compared with the desired target
distance dgegireq €xtrapolated from the previous time step tg. Each time dgegireq lies below
d(7(t1),p), a failure counter ¢4 is incremented:

tfail — tfail + At iff ddesired < d(F(tl)ym (314>

Based on t 4, a failed target approach is detected once its value rises above a given delay
time threshold 7', which determines the time one wants to allow for making detours



3.5. Cost Measure Definition 53

during target approach. Suitable values for T%,; must be determined empirically, but can
be guided by considering the expected amount of clutter in the operation environment
and the maximal size of detours that the pilot’s world model can generate. The choice of
k is less critical. In practice, a value of 0.25 has proven to be useful. Thus, the pilot is
considered to be off track if it does not approach the target with at least a quarter of the
current maximum velocity.

Once a traversal failure is detected while the pilot is executing an edge traversal command,
the navigator layer must become active and perform two tasks. First, the failure must be
represented in the topological map in a way that prevents the repetition of the unsuccessful
attempt in the future. Second, a new command must be issued in order to let the pilot
resume movement. The second task falls into the responsibility of the navigator’s path
planning and exploration components and will be discussed in their respective expositions
in sections 3.6 and 4.2. Here, the presentation will continue with the issue of failure
representation.

An obvious step that needs to be taken when the pilot fails to traverse an edge e is to
change e’s type attribute to untraversable in order to exclude it from further use in path
planning. However, this does not capture all information that has been gained during the
failed attempt. Some of this information is also contained in the position occupied by
the robot at the instance of the failure attempt. This location is obviously accessible, but
it is also navigation-relevant in the sense that it is probably as close to the original goal
as the piloting layer could manage. Therefore, it appears sensible to insert an accessible
node exp at the robot’s position, along with a traversable edge originating from e.n and an
untraversable edge to e.n’. Finally, it is reasonable to assume that the pilot can steer back
from exp to e, so at least the insertion of a speculative edge (EXP, e.n) is warranted. The
complete update rule is formulated in algorithm 6 and an example is displayed in figure
3.18.

Algorithm 6: RepresentFailure(Edge e, Point3D robot)
Data: Graph G = (N, E) // the global topological map

((n,n'),t, A) =

exp := (robot, accessible);

N «— N Uexp;

E — E\e;

E — E U ((n,n’), untraversable, A);

(n,
E «— E U ((e.n, exp), traversable, (});
E— FEU ((ea:p, e.n), speculative, 0));
E «— E U ((exp,e.n’), untraversable, 0);

3.5 Cost Measure Definition

The exposition of basic functionalities in the last section has shown how a given path
traversal command can be translated into motion requests for the robot pilot and how
both successful and unsuccessful command execution can be detected robustly. Now, it is
possible to approach the question how the navigator can actually find the most suitable
path through the topological map to a given goal in the first place.
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(a) Map before traversal failure (b) Map after traversal failure

Figure 3.18: Representing traversal failures

The most important step required in order to solve this task of topological path planning
is to cast the informal notion of the ‘most suitable path’ into a mathematical formalism
that can be treated with the help of a path planning algorithm. This can be accomplished
by adding a cost measure to each graph edge and defining the total cost of a candidate
path as the sum of its constituent edge costs. Finding the ‘most suitable’ path then
amounts to a search for the path from start to end node which minimizes the path cost.

Since the cost measure is key to the whole process of path planning, its definition needs to
be approached carefully. A good choice should fulfill at least the following three require-
ments: For one, the cost measure should be complete, e.g. capture all of the environmental
aspects that have a substantial impact on the robot’s performance. For another, as the
importance of the different aspects might change due to new mission requirements, the
cost measure should be adaptable based on externally selectable priorities. And thirdly,
it should be ensured that edge costs always remain consistent with the actual difficulties
experienced upon map edge traversal, even if these were mis-estimated initially or change
over time.

The next sections give a short overview of existing cost metrics and discuss their suitabil-
ity with respect to the given set of desired characteristics. Afterward, the multi-criterion
cost model that has been developed in the context of this thesis is introduced. Subse-
quently, the mechanisms which allow the adaption of the cost measure to changing path
planning requirements and a learning scheme that ensures cost consistency is presented.
The chapter concludes with a description of the path planning process that is based on
the previously introduced cost function. A series of both simulated and real experiments
are conducted in order to evaluate the achieved results.

3.5.1 Existing Measures

Literature provides ample examples of cost measures for robot navigation. However, most
proposals deal with dense metrical maps and are tuned toward sensor-based traversability
analysis. For topological approaches, issues such as place recognition and perceptual
aliasing have dominated research and cost measures propositions are considerably rarer.
Nevertheless, this section gives a survey over different classes of existing cost measures for
topological maps.
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Scalar Cost Measures

In the simplest case, the cost measure takes the form of a single scalar value and its nat-
ural order. In this case, classical dynamic programming approaches such as the dijkstra
[Dijkstra 59], A* or D* algorithm can be used for path planning. These allow substan-
tial combinatorial reductions in the search space of possible paths and have a typical
complexity of O(||N?||) for graphs containing N nodes.

Topological path planning systems using scalar cost measures usually work with edge
traversal times or metrical distance betweens start and end nodes. Examples using node
distance as cost metric include the TOUR model from Kuipers [Kuipers 77] or the hybrid
mapping approach from Thrun [Thrun 98a]. [Ryu 99] also employs metrical node distance
to define a cost measure for topological path planning.

Stochastic Cost Measures

Dynamic environments that contain elements such as doors or mobile obstacles can exhibit
large traversability variations over time. If the changes follow some consistent pattern
(such as a door which is closed 30% of the time), they can be taken into account for
improved robot path planning. One way to achieve this is to model the observed variations
into the edges’ cost measures, transforming them into stochastical cost measures.
[Loui 83] summarizes some ways of dealing with such weights.

One approach is to calculate the expectation of each cost measure and solve the result-
ing deterministic problem using a technique for scalar measures. [Hu 97] presents a path
planning algorithm for dynamic environments that employs such a strategy. Here, two
probabilistic models are maintained for each edge in a predefined topological map: one
model for the probability of encountering obstacles that partially obstruct a robots path
and thus increase travel time linearly and another model for the likelihood of fully blocked
edges which require expensive backtracking. By continuously adapting the parameters of
both probability models whenever obstacles are detected using Bayes estimates, it is pos-
sible to compute an average ‘uncertainty cost’ from the models expectation values. This
cost can then be added to the static scalar edge cost based on travel time. Further pub-
lications which employ stochastical edge cost models are [Simmons 97] or [Kruusmaa 03].
[Kruusmaa 03] actually represents the variance of edge costs in a ‘case-base’ for case based
reasoning, which is a rather unconventional approach. However, the resulting behavior
of the path planner is comparable to the other stochastic methods. As these techniques
map the gathered probability information onto a single scalar cost value for each edge
separately, path planning itself can again be accomplished using the dijkstra algorithm.

In contrast, the use of full probability distributions during path construction allows to
optimize probabilistic conditions such as finding the path with ‘the greatest probability of
realizing the least weight’. Unfortunately, such approaches cannot be solved with dynamic
programming and are thus computationally intractable for online robotic applications.

Multi-Criterion Cost Measures

In real applications, it is easy to come up with more than one aspect of ‘cost’ that should
be optimized by a path planning strategy. For example, three important cost aspects of
paths subject to minimization are a) path length, b) energy consumption and c) travel
time.
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While the required information can be easily stored by extending a scalar cost measure to
a multi-dimensional cost vector that records separate values for each cost component,
the definition of an ordering relation becomes much harder. For instance, is a path superior
to another if it requires one unit of energy less but needs two seconds more? And how do
different path lengths play into this?

Multi-criterion decisions similar to the one outlined above have been studied in the context
of operations research and decision-making theory for a long time. Available surveys and
theoretical works on this topic can be found in [Loui 83], [Horn 97] and [Zitzler 99]. For
applications outside the area of robotics, a popular approach is to rule out all solutions
that are definitely worse than another one before any multi criterion decisions are made
[Horn 97]. This can be accomplished as soon as the domain of each single cost component
is partially ordered, which can be expected for all realistic scenarios. Given such orderings,
a solution is said to dominate another one if a) all of its components are equal or better
that those of the dominated one and b) at least one component is definitely better. With
this definition, it is clear that dominated solutions are not relevant for the selection of the
final decision and can thus be discarded. Once the set of non-dominated solutions (also
called the ‘pareto set’) is found, its cardinality might allow a human operator to simply
select the solution that he or she deems best. In this case, automated decisions about the
difficult multi-criterion problem are side-stepped completely.

Of course, human interaction is no option for an autonomously operating robot. Thus,
some order on the cost measure vector must be imposed. The scalar aggregation method
defines an utility function u(C) : R¥ — R that maps the & components of the cost measure
vector ¢ into a single utility value. Based on this value, simple scalar path planning can
be performed. A straightforward choice for u is a linear combination of all cost aspects
with user-defined weights w;: u(¢) = woco+wieq +. .. +wycg. The weights can be used to
specify the relative importance of each cost factor, but the method cannot express more
complicated orderings such as non-linear relations or dependencies between components
(like in the statement ‘less battery consumption is only better if travel time does not
increase’). Nevertheless, scalar aggregation is often used in practice. [Soltani 02] presents
an application for path planning in construction sites, where possible travel speed, obstacle
clearance and visibility of the surrounding are modeled and aggregated into a single cost
scalar.

Another possibility to define an order on the cost vector is to introduce a hierarchy similar
to a lexicographic ordering. [Ferndndez-Madrigal 99| presents such a hierarchical multi-
criterion approach for path planning. Here, a hierarchy of ‘less than’, ‘equal to’, or ‘greater
than’ constraints is formulated on the cost factors. Each constraint imposes a partial
ordering for the involved cost aspects on that level. Between levels, the satisfaction of a
higher level constraint is infinitely more important that that of a lower level. This implies
that the optimization of a path according to level 2 criterions can only work with the
solutions that fully satisfy all level 1 criterions. In practice, this allows the formulation
of a multicriterion order without the need to mix or compare different cost factors by
defining constraints for different cost aspects on distinct levels. For example, a sensible
ordering of a cost vector with size 3 could be introduced by the following three constraints:

e Level 1: safety (¢y) > 0.9

e Level 2: distance (¢;) < 100m
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e Level 3: time () < 120s

In this example, the proposed METAL-A* search algorithm would first find paths with a
safety value above 0.9, then try to minimize distance among the remaining candidates and
finally consider the time cost factor among the selected solutions. If one constraint cannot
be successfully satisfied, the implied order is used to provide a best effort approximative
solution. In the example, if there are no safe paths with distances < 100m, the shortest
path that still holds ¢y > 0.9 would be selected.

3.5.2 Cost Measure Selection

The presented approaches cover a wide spectrum of possible ideas for cost measures.
However, not all of them are equally well suited for the use in the outdoor scenario which
is the target here. For instance, single valued cost metrics are too restricted to record all
information about important cost factors in outdoor environments. As an example, taking
the euclidean distance between connected nodes as sole cost source completely neglects
different slopes or the inherent difficulty of negotiating various terrain types. As both have
significant impact on the terrain traversal performance in outdoor environments, any cost
metric which does not also take these factors into account is unavoidably incomplete.

Multi-dimensional cost metrics are better suited to store all relevant data about terrain
slopes etc. However, they require deliberation of the relative importance of the different
cost factors and should provide a way to adjust these weights whenever mission require-
ments change. With respect to this, approaches that perform scalar aggregation appear
to be more flexible than hierarchical methods. Aggregation methods allow continuous ad-
justment of the cost factor importance through parameter tuning of the utility function,
while the alteration of hierarchical constraints introduces unsteadiness of the cost function
whenever constraint levels are changed. The increased flexibility is bought at the price of
requiring a sensible way to compare the different cost factors, which can be avoided when
using hierarchical techniques.

Finally, the combination of high environmental complexity and the navigator’s indirect
control over the vehicle trajectory (as a result from employing a behavior-based pilot
layer) introduce an amount of cost uncertainty that could be modeled more accurately
by probabilistic measures than by standard multi-dimensional techniques. However, the
use of complex models or accurate estimation requires many samples for each topological
edge. As this is an unrealistic proposition for the large scale environment that is targeted
in this thesis, any probabilistic elements of the selected cost measure should be introduced
rather as an optional component than a central issue. Also, assumptions about the form of
the cost distribution should be avoided because they could introduce unsound statistical
assumptions.

In any case, the issue of cost consistency is critical due to the use of a behavior-based
pilot instead of accurate metrical path planning. As the path planner has no a priori
knowledge of the real trajectory that will emerge during robot motion, the calculation of
consistent traversal costs requires a substantially different approach than established tech-
niques which compute trajectories and the associated costs a priori. As will be presented
in section 3.5.4, an a posteriori learning scheme has been developed instead which esti-
mates the cost factors based on the robot’s experience once the actual trajectory has been
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executed. Assuming that a similar trajectory will be produced the next time this edge is
traversed, the estimated costs can be used to gradually build a consistent edge traversal
cost estimate. In order to make this approach work, it is essential to use components for
the cost function which can be correlated with observable robot parameters. This need
for observability must be taken into account when selecting suitable cost factors for the
edge cost metric.

3.5.3 Cost Metric Selection

Based on the deliberations presented in the last section, a multi-dimensional cost met-
ric is chosen for the purpose of topological path planning in order to capture all relevant
cost aspects. Three independent scalar cost factors are singled out as the main compo-
nents of the metric for two main reasons. First, they capture the essential environmental
aspects that influence the robot’s performance. Second, they can be adjusted after each
edge traversal has concluded based on the experiences collected by the robot.

Each of the three scalars summarizes a different cost-relevant aspect of the edge under
question. The first value captures how difficult the execution of the edge traversal com-
mand is for the piloting layer due to problematic terrain conditions or the occurrence of
obstacles etc. and is subsequently called the risk R. The second value, effort W, is a
measure of the amount of energy and time the robot must invest in order to traverse this
edge, and is therefore linked to the traveled slope and distance. The third component is
defined as the robot’s familiarity F' with the edge. The familiarity value indicates how
often the robot has traveled along the edge before and correlates with the accuracy of the
effort and risk estimations. Its main purpose is to provide an elegant way for effecting
explorative behavior with adjustable priority by tuning edge costs based on how frequent
they have been used previously.

3.5.4 Learning Cost Factors through Self-Observation

The abstracted, topological map chosen as world model for the navigator does not explic-
itly store local terrain traversability but rather assumes that the subordinated obstacle
avoidance layer copes with these spatially limited issues. The physical trajectory emerges
in situ, after the traversal of an edge has been initiated, through complex interaction of
the obstacle avoidance layer, the terrain and the traversability properties perceived at
that moment.

This explicit abstraction from the real trajectory is a mixed blessing. On the positive side,
the topological world model is less dependent upon accurate position information to merge
sensor data correctly with the map and thus more robust against errors, which is of great
value in cluttered environments where localization is difficult and error prone. On the
negative side, the lack of knowledge effectively prohibits the a priori computation of risk
and effort measures that reflect the true characteristics of the emerging trajectory. But
without such a measure, cost-optimal path planning cannot be achieved. This dilemma
is a central issue that results directly from the design decision to split the navigational
competences into two different levels of abstraction and reduce metrical knowledge on the
higher level to a minimum. A solution is therefore not only vital to the successful appli-
cation of the navigation system proposed in this thesis, but also contributes significantly
to all similar architectures.
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Proposed Solution

Even though there seems to be no way to estimate a consistent edge cost prior to edge
traversal without making at least some assumptions about the metrical trajectory that
will emerge, it is well possible to do so after edge execution. More precisely, the proposed
approach’s central idea is to learn a consistent cost measure after an edge has been tra-
versed by observing the pilot’s activities during the robot movement. For instance, by
monitoring the behaviors responsible for avoiding dangerous elements such as obstacles,
an estimate of the risk involved in traveling an edge can be made. Likewise, behaviors
sensitive to energy consumption can be examined to gain a notion of how much electrical
energy is spent for the transition.

As the pilot is a behavior-based system, this technique requires that at least the cost-
relevant behaviors generate some sort of situation assessment or activity signal which
can be observed by other software components. This is certainly true for all behavior
within the iB2C framework used by the RAVON robot, because every behavior module
exports a target rating encoding the behavior’s actual ‘happiness’ with the current
situation. Nevertheless, many other established behavior-based systems do also provide
such information or can be extended easily, because such assessment signals provide key
information for the internal fusion of multiple behavior outputs.

The continuous collection of situation assessments quickly yields a large amount of data
samples. To condense these into a single value for each cost factor summarizing the
complete edge, data collection is followed by a weighting and integration stage. Two
different integration schemes have been developed. For proprioceptive behaviors reacting
to internal information only (such as energy consumption), a temporal integration of the
situation assessments suffices. Contrastingly, exteroceptive behaviors that process stimuli
from locations outside the robot such as obstacle avoidance behaviors require an additional
spatial integration in order to prevent excessive influence of repeatedly detected obstacles.

After finishing data integration, the obtained information about the experienced risk and
effort cost factors is encapsulated in an annotation and appended to the edge’s data
record. Multiple traversals produce multiple annotations per edge, which allows a certain
degree of probabilistic reasoning about the real edge costs. For path planning, the collected
annotations are compressed into a single cost value in two steps. First, all acquired
annotations of an edge are combined into a single estimate for the cost vector. Then, the
cost vector is aggregated into a single scalar value via an utility function. Each of these
steps will be elaborated in detail in the subsequent sections.

A major benefit of the proposed approach is that by virtue of its design, it guarantees
that the learned cost measure is consistent with the robot’s actual behavior guided by the
behavior-based subsystem. However, it is also computationally efficient, since the cost
learning does not require any additional sensor evaluation, but can effectively re-use the
data interpretation already performed by the low-level pilot layer.

3.5.4.1 Learning System Design

A schematic overview of the developed observational system for edge cost learning is
shown in figure 3.19. The robot’s sensors and actuators constitute the lowest level of the
navigation system depicted on the left side of the figure. The actors are controlled by the
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Figure 3.19: Schematic of the observation framework for edge cost learning

behavior-based pilot, of which two sets of behaviors A = {4y, As,...}, B={By, Bs,...}
are singled out as their observation provides useful cost information about risk and effort
cost factors. The ‘Motor Control Behaviors’ in set B are proprioceptive and their situation
assessment signal r5:(t) corresponds to the current at time ¢ fed into the actuator assigned
to the behavior. r is assumed to be normalized and ranges from 0 if no current is applied
up to a value of 1 at full current. The motor control behaviors are activated and controlled
by the set A of obstacle avoidance behaviors, which have the purpose of steering the robot
safely around obstacles using sensor data such as range measurements. In contrast to B,
set A contains exteroceptive behaviors reacting to stimuli (obstacles) originating from a
spatial location outside the robot. For these behaviors, the situation assessment 74¢(¢)
is expected to be 0 if behavior A; does not see any necessity to influence the robot’s
trajectory. It should be 1 if the behavior wants to produce the maximal effect achievable
in its scope. For example, a value of 1 would be attributed to a velocity reduction behavior
trying to bring the robot to a complete halt, or a turning behavior which wants to turn
the robot with the maximal possible steering angle. Although not strictly required, it
is beneficial for later cost learning if situation assessments vary smoothly between the
extremas of 0 and 1. For example, the obstacle behaviors could express dissatisfaction
(and a corresponding assessment signal) in proportion to the lowest distance to obstacles
closer than a safety margin.

In addition to a suitable situation assessment signal, exteroceptive behaviors are required
to export the spatial location p*i(¢) of the stimulus responsible for the situation assess-
ment. This data will be used in the spatial integration scheme presented in section 3.5.5.
If no single point is responsible, an abstraction, such as exporting centroids or the nearest
location, is also acceptable. The topological path planner is placed at the uppermost part



3.5. Cost Measure Definition 61

of this schematic and manages the topological map. The right side of the figure displays
the main components of the edge cost learner and will be explained in the next sections.

3.5.5 Integrating Behavior Observations into Annotations

Once the path planner has selected an edge e that should be driven, it signals this com-
mand to the behavior-based pilot. In the following, ¢ is limited to the execution time of
a single edge traversal command e starting at time ¢y and ending at t; (to < t < #;).
The edge cost learning component on the right side of figure 3.19 observes the situation
assessments r(t) of the two cost-relevant behavior sets A, B. In the depicted scenario,
the assessments of set B are directly related to the motor currents, so it is reasonable to
assume that their observation can yield a measure of how much energy the edge traversal
requires, i.e. an estimate of the ‘effort’ cost factor W. Similarly, the assessments of the
obstacle avoidance set A should contain a notion of how much trajectory deviation due
to obstacles was necessary. Under the assumption that traveling close to obstacles consti-
tutes a risk and should be costly, these assessments are suitable to produce an estimate
for the ‘risk’ cost factor R.

During robot motion, the scalar situation assessments ri(t) and rPi(t) ranging from 0
to 1 are first weighted by user-provided factors w?: and w?. This allows specification of
the relative cost impact of different behaviors. For example, a behavior responsible for
(dangerous) backtracking out of dead-end situations could be awarded a higher w* that
a simple ‘slow down near an obstacle’ behavior.

Temporal Integration

After weighting, the continuous stream of assessments is integrated in order to generate
one single cost estimate for the complete edge. For proprioceptive behaviors such as those
in set B, this integration step amounts to a simple temporal integration of the weighted
sum of the set’s assessments:

W= > wPirPi(t) | at (3.15)

to i=1

In the depicted control system, the result W is proportional to the total amount of energy
spent by all motors during traversal of edge e and can thus be used as effort estimate W.

Spatial Integration

For exteroceptive behaviors, plain temporal integration is too simplistic. It leads to a
dependency of the final cost estimate on the robot motion speed, as a slower movement
causes a longer exposition to the external stimulus and thus a larger integrated value.
Although there may be cases where this is desirable (and thus equation 3.15 can be
applied), it appears counter-intuitive that a slow robot should judge a given obstacle
situation more negatively than a faster model. As a solution, a spatial integration step
has been developed for combining exteroceptive behaviors situation assessments. For
this, the robot must provide a locally stable frame of reference during edge traversal onto
which the source location () of each behavior assessment r4i(t) is referenced. It is
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not required to provide an exact or globally stable coordinate frame, so accurate robot
localization remains unnecessary. As data structure for storing the assessments, a spatial
map S has to be used. S can be modeled as a grid map with grid cell sizes equal to
the accuracy of the sensor data used by set A or the accuracy of the reference frame,
whatever is lower. This helps to make S both: robust against noisy location data and
memory efficient. As notational conventions, S(p) should be interpreted as an access to
the grid cell of S which represents location p. > S denotes the sum of all grid cell values
and is assumed to be initially zero.

Coming back to the spatial integration scheme, at each sampling time ¢, the 7% (¢) values
of all behaviors are stored into S at their corresponding positions p(t) using a maximum
update rule:

for each i: S(p (t)) := max (S(p (t)), whrti(t)) (3.16)

Once all assessments have been added to S, the integrated scalar risk cost estimate R for
edge e can be derived directly through summation (’spatial integration’ over S):

R=>58 (3.17)

Figure 3.20 shows an example. A trajectory that emerged as the robot steered around
three obstacles is depicted in figure 3.20a. Figure 3.20b shows the corresponding spatial
map S that has been constructed using the maximum update rule from the obstacle
avoidance behavior situation assessments during traversal. Green colors thereby represent
the robot trajectory, whereas the red color intensity indicates the value of S at that
location. Figures 3.20c and (d) show the temporal development of the used assessments
separately for behaviors reacting to obstacles on the right resp. the left side of the robot.

After risk and effort estimates R, W have been generated for the topological edge e, they
are attached to it as an annotation A = (R, W) and stored in the edge Annotation Set A
(which has already been introduced as part of the formal definition of the edge made in
section 3.3.1, but not used until now) for use in cost computation. This process is detailed
in the next section.

3.5.6 Computing Cost Factors from Annotations

For the first step, let’s assume that an edge e is annotated with the set A = {A\1, Ao, ..., A\, }
where \; = (R;,W;) , 1 < i < n. It is expected that each annotation is a sample taken
from an unspecified distribution centered at the true values of effort and risk. Without
assuming any specific form of this distribution, it is still possible to estimate the sample
mean and unbiased sample variance of the annotation set. Both should be accounted for
in the cost metric in order to maximize its information content. To do so, a combined
annotation A = (R, W) is computed containing the estimated mean plus an adjustable
portion  of the estimated standard deviation:
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Figure 3.20: Spatial integration example

b= ") = 2 3 (R, W) (318)

7 =(a",0") = \/ LS (R = ) (3.19)
A= (RW)=pu+do (3.20)

The influence of the deviation weighting parameter § can be understood more intuitively
by interpreting it as the path planner’s overall ‘pessimism’. Positive values of  increase
an edge’s cost proportional to the estimated standard deviation. Thus, this parameter
setting favors edges with low variance, typically encountered as part of well established
routes with little critical situations that can ‘go wrong’ and lead to increased costs. Intu-
itively, the path planner is pessimistic and expects the worst. Consequently, it prefers to
select well known paths that do not contain cost surprises.

On the other hand, using negative values for § produces ‘optimism under uncertainty’ and
actually favors such unstable connections. Aside from critical situations, another possible



64 3. Cost-FEfficient Large-Scale Navigation

cause of high variance can be that the edge has simply been used rarely. This effect
can be exploited to produce exploratory behavior, with § determining the exploration /
exploitation tradeoff. However, care must be taken for § < 0 as many path planning
algorithms (such as the dijkstra algorithm) require strictly positive edge traversal costs in
order to terminate.

The estimation of the third cost factor familiarity F' cannot be accomplished through
observation of the pilot, since it is a measure of the map itself and the pilot is unaware
of this global representation. Therefore, the familiarity cost F' is derived by taking the
cardinality of e’s annotation set A and setting F' = |A|. Since an annotation is added
each time an edge is traveled, frequently traversed edges quickly increase their familiarity
score.

Concatenating all three combined cost factors together produces the raw Cost Vector C
of edge e:

~ o~

éz(R W F)T (3.21)

3.5.7 A Utility Function for Scalar Aggregation

Once the cost vectors C¢ are known for all edges e in F, an ordering relation can be defined
to compare them. As discussed in section 3.5.2, the relative cost factor importances of
a multicriterion cost measure can be adjusted more flexibly if scalar aggregation is used
instead of a constraint hierarchy. As wtility function u(C_"e) : |3 — R for the aggregation

. —  _~  _\T
of edge e’s three dimensional cost vector C¢ = (Re We F e> , plain weighted averaging

is chosen due to its simplicity according to the formula:
u (6) — aRe + e + 7 F* (3.22)

where «, (3, v specifies the relative weight of each cost aspect.

It can not be expected that the risk, effort and familiarity cost estimates are always
comparable in scale or do fall within predetermined limits. Instead, the numerical range of
each cost component depends largely on the initially unknown structure of the topological
map in conjunction with the underlying terrain and is in principle unbounded. Thus,
if the weights «a, 3,7 are not carefully chosen for each operation environment, it can
easily happen that one cost factor dominates the others just because its value range is
unexpectedly large in the current scenario.

In order to avoid this effect which complicates the definition of general path planning
priorities, a normalization step can be used to make the scales of the different cost aspects
comparable regardless of the current scenario. It appears to be sensible to scale all cost
values into the range [0, 1] using the current map’s respective risk, effort and familiarity
maxima over all map edges. Using the maximal values RIX JyMAaX FMAX found yp to
now results in scaled values between 0 and 1 and leaves the relative proportions within
a category intact (an edge that is twice as risky as another will remain so regardless of
scaling). However, the proportions between categories may change if new maximal values
are found. This is not assumed to be a significant problem, since the scaling factors tend
to stabilize quickly as measurements accumulate.
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On the basis of RIMAX JMaX apq FMAX 1o normalized utility function i (6) can
be defined:

fL<Ce>:a/\+5/\ oy (3.23)
RmaX WmaX FmaX

As only the relative proportions of the cost factor weights are important, it is safe to
impose the constraint o + 3 + v = 1 without losing expressiveness. This constraint

ensures that @ <ée> is bound by the interval [0, 1].

Analogous to the variance weight parameter ¢, the weights o, 3, v can be given a more
intuitive interpretation as the motivational state of the global navigation system. Seen
from this motivational viewpoint, o expresses the path planner’s ‘fear’ level (high « values
increase the cost of risky drive commands, making them less likely to be included in paths).
Likewise, 3 denotes the robots ‘impatience’ and + the robots ‘curiosity’.

The introduction of a motivational state allows a human operator to influence the path
planning strategy in an intuitive way, so that it can be set according to the current require-
ments of a mission. Furthermore, it provides an interface that facilitates the addition of
another (behavior-based) control layer on top of the path planner in the future, influencing
the three basic motivations. Although this issue has not been approached in the scope of
this thesis, the addition of such a high-level system is an interesting area for future work
and promises some benefit for navigational tasks. For example, repeated failures to reach
certain way points could increase the fear level, automatically leading to the selection
of safer paths. Likewise, the lack of new experiences could increase the robots curiosity,
making well-traveled paths more and more unattractive. A distributed, behavior-based
architecture that implements these deliberations can be seen as a model for distributed
decision-making, with the weight aspects computed separately and the concrete action
selected by the path planning subsystem. Some further interpretation of these effects in
the context of the simulation of emotions have been published in [Hirth 07].

3.6 Putting it Together: Topological Navigation

With the building blocks presented in the last sections, the complete topological navigation
scheme can be put together. It has to be flexible enough to allow maneuvering the robot to
an arbitrary position in the environment while taking advantage of the topological map as
much as the operator deems necessary. In the general case, both start and goal locations
must not coincide with topological nodes. Such a flexible movement sequence consists of
three distinct phases:

1. Approach: The robot moves from its current position toward a topological node n°.

2. Path Traversal: The robot travels along a path P = eg,eq,...,e, of map edges
between ey.n = n® and e,.n’ = n°.

3. Departure: The robot moves from the last topological node n® to the goal position
—end

p
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Given the map entry and map exit nodes n® and n® plus the optional goal position
7" by the user of the navigation system, this movement sequence can be implemented
using the various functions and algorithms introduced in this chapter.

First, the approach stage is initiated by invoking the ApproachTargetECSPose function
(alg. 3, p. 46) with parameters (eg.n.p, eg.n.p, eg.n’.p). Likewise, the departure stage is
mapped to the call ApproachTargetECSPose(e,,.n’.p, pe¢, 54 ). Both movements do not
correspond to an edge contained in the topological map and thus no place exists to attach
annotations. Therefore, the behavior observation and cost learning scheme is not used

during these stages.

The path traversal phase is the central part of the navigation system, as the computed
path should be cost-optimal according to the set motivational state and also take advan-
tage of previous cost experiences. Thus, the implementation utilizes most of the various
algorithms introduced in this chapter. In order to compute the path P between map
entry n® and exit n®, the stored edge annotations are condensed into one scalar cost
value 4(C*) per edge e using the current motivational state of the path planner and the
techniques detailed in the previous sections 3.5.6 and 3.5.7. Then, the standard dijk-
stra algorithm [Dijkstra 59] is applied to find the cheapest path between entry and exit
node. This path is subsequently traversed by alternatingly calling ApproachTargetEC-
SPose(e;.n.p, e;.n'.p, e;11.n'.p) with increasing i and awaiting edge traversal completion
using the DetectTargetArrivalWithPostponement algorithm (alg. 4, p. 48). If the edge
has been successfully traversed, the reached node is then relocalized if it was speculative
(sec. 3.4.3) and potentially fused with nearby nodes using the FuseNodes algorithm (alg.
5, p- 51). Additionally, a new annotation is attached to the traversed edge using the
observation-based cost learning scheme (sec. 3.5.5). In case the failure detection detailed
in section 3.4.5 signals an unsuccessful edge traversal, the RepresentFailure algorithm is
executed and a new path is planned from the node inserted at the current robot position
to the end node n..

3.7 Experiments and Results

In order to validate the presented methods, a series of experiments has been conducted.
These were carried out using both the simulation environment introduced in appendix A
and the real robot in a test area featuring various terrain peculiarities such as hills, trees,
bushes, tall grass as well as diverse impassable boulders, poles or concrete structures.
Details concerning the implementation of the navigation system as well as the experimental
results are presented below.

3.7.1 Implementation

The methods presented in this chapter have been implemented as part of a global naviga-
tion layer put on top of the behavior-based pilot described in section 2.2. As can be seen in
figure 3.21, the navigator contains and manages the topological map data structure intro-
duced in this chapter. Control of the robot is achieved using only a very narrow interface
between the high level navigator and the pilot. To control the robot actions, the navigator
activates the Approach Target Position and Approach Target Pose interface behaviors of the
pilot. This is implemented by first converting the active ECS target position or pose into
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the working coordinate system WCS using the conversion matrix M5 and supplying

the resulting WCS position fy,5 or pose (Fmos, 7"V %) to the pilot. If a WCS position
is to be attained, an activation value of 1 is sent to the Approach Target Position iB2C
behavior within the piloting layer. For WCS poses, the Approach Target Pose behavior is
activated instead.

Navigator
Arrival :‘> Path <: Path <: Lkl
Detection Execution Planner
11
11 A
Current Approach Approach Log Logged
Robot Pose WCS Position WCS Pose Enable Behavior
7Ves > 7CS (B7CS WS ) / Ratings
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Logging
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Motor Control Behaviors
1
v
| Robot Sensors | | Robot Actuators |
|:| Behaviors —— Control / Data Flow

Figure 3.21: Navigator - pilot interface

As feedback from the pilot, the navigator primarily requires the current position estimate
of the robot to determine whether a travel command has been successfully completed.
Given the WCS robot position estimate 7'V the navigator computes the required ECS
position pFCS using pFeY = MEZL « pVES. Furthermore, the cost learning scheme
requires that the navigator can observe the target ratings of the pilot behaviors dealing
with the motor currents and obstacle avoidance. Table 3.5 summarizes the behavior sets

A and B that have been selected for this purpose.

For performance reasons, the observation part is implemented through a logging mech-
anism that is integrated into the pilot. Whenever the navigator issues a command that
corresponds to the traversal of an existing edge in its topological graph, it also activates
the logging mechanism in the pilot using a flag l.,qp.. The created log contains the target
ratings 7(t) of the cost relevant behaviors as well as their stimulus locations p(t) and the

current robot pose estimate V(). Upon completion of an edge traversal, the navigator
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Set Main Group Full Name w Purpose
A Avoid Left FW Keep Dist Left (Crit) Rot 1 Rotates away from (critical) left obstacles
during forward motion
BW Keep Dist Left (Crit) Rot 1 Rotates away from (critical) left obstacles
during backward motion
Keep Dist Sideward Left 1 Translates away from obstacles on left side

Avoid Right FW Keep Dist Right (Crit) Rot 1 Same as above, for right side
BW Keep Dist Right (Crit) Rot
Keep Dist Sideward Right

— =

Evasion Forward Evasion 0.75  Selects right or left avoidance direction
for obstacles directly ahead
Backward Evasion 0.75  Selects right or left avoidance direction

for obstacles directly behind

Slowdown FW Obstacle Slow Down 0.5 Reduces forward speed near front obstacles
BW Obstacle Slow Down 0.5 Reduces backward speed near rear obstacles
Side Obstacle Slow Down 0.5 Reduces overall speed near side obstacles

Stop FW Crit. Obst. Stop 2 Stops forward motion before hitting obst.
BW Crit. Obst. Stop 2 Stops backward motion before hitting obst.

B Curr. Limit Limit FR 1 Monitors front right motor current
Limit FL 1 Monitors front left motor current
Limit RR 1 Monitors rear right motor current
Limit RL 1 Monitors rear left motor current

Table 3.5: Behavior sets observed for edge cost learning

commands the logging system to stop and transmit the data that has been collected so far.
Based on the received log data, the cost learning algorithm can reconstruct all relevant
information about the completed edge traversal and compute the resulting cost estimate.
With this logging mechanism, cost learning does not cause any ongoing data transfer dur-
ing the edge traversal itself. Instead, the whole log is transferred in one piece just after a
move has concluded. Since navigator and pilot software is executed on different physical
machines, this saves a significant amount of network communication overhead.

3.7.2 Quantitative Analysis

The first set of experiments has been designed to study the quantitative behavior of the
edge cost observation framework in both simulation and real world settings. For this, the
cost estimation for a single edge has been observed in situations that become increasingly
risky and energetically taxing.

3.7.2.1 Simulation

Figure 3.22 shows three edge cost estimates obtained using the SimVis3D framework. The
top row shows a topological edge e = (ng,n1) obstructed by three increasingly complex
obstacle configurations. The middle row shows the corresponding spatial map S with a
grid cell size of 0.75 m averaged over 50 edge traversals. Green pixels indicate locations
passed by the robot, red pixels denote stored situation assessments w{'r“i(¢) of the obstacle
avoidance behavior set. In the bottom row, the resulting cost estimates are listed along
with the behavior classes that contribute the most to the obtained risk estimate.

As can be seen, the increase in obstacle number and placement complexity corresponds
well with the increase of the edge’s derived risk estimate. This is a very important result.
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Figure 3.22: Cost estimates for three different simulated obstacle scenarios

It documents the principal effectiveness of the proposed risk learning scheme in deriv-
ing abstracted cost information from the pilot behaviors. The figure also illustrates the
uncertainty of the actual trajectory driven by the robot, as minute differences in start-
ing orientation can decide whether the obstacle is passed on the right or left side. This
uncertainty is the main contributing factor for the estimated standard deviation. It also
becomes apparent in the fact that both the ‘Avoid Right’ and ‘Avoid Left’ behavior classes
are significant contributors for the risk estimates.

A more detailed view of the individual annotations leading to the estimated cost values is
depicted in figure 3.23. It can be observed that although both risk and effort observations
vary and contain several outliers, the estimations tend to cluster around a certain central
value. Mean and standard deviation are adequate to describe this central value in all
three examined cases.

Whereas risk estimates increase monotonically with increasing obstacle complexity, the
effort estimate is actually lowest for the ‘Passage’ scenario, followed by ‘Single Obstacle’
and ‘Dead End’. This apparently unintuitive result can be explained when considering
figure 3.24. Here, the length of the real trajectory that the robot traveled during edge
traversal is plotted against the obtained annotation effort. As can be seen, the traveled
distance is actually lowest for most annotations of the ‘Passage’ scenario (corresponding
to trials where the robot passed straight through the passage between the two obstacles),
followed by the ‘Single’ and ‘Dead End’ scenarios. Overall, a strong correlation between
travel distance and effort can be observed. As the simulated scenarios are flat, distance
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Figure 3.23: Individual cost annotations for the simulated scenarios

indeed remains as the single most important factor that influences the robot’s energy
consumption.
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Figure 3.24: Effort per distance in the simulated scenarios

3.7.2.2 Real World

The quantitative experiments conducted in the real world resemble those conducted in
simulation. Two scenarios with increasing difficulty have been selected. The first scenario
‘Stone Block’ contains an isolated, single stone obstacle in the middle of the edge to be
traversed. The setup along with the resulting spatial map (averaged over 30 trials) and the
derived cost factors is shown in figure 3.25a. The second scenario ‘Ring of Seats’ contains
a circle of permanently mounted, impassable stools as well as an additional stone block on
the far side of the seat ring. The scene is more difficult to traverse than the ‘Stone Block’,
since the obstacles are spread across a larger area and are less compactly placed. The
seats themselves are also more challenging to detect for the pilot (the support of the seats
is rather delicate in the horizontal scanner’s measurement plane). Figure 3.25b shows the
scene and the derived estimates.

As before in the simulation experiment and required for a consistent cost measure, the
estimated risk and effort costs rise for the more difficult scenario. However, the single



3.7. Experiments and Results 71

Cost Estimates (u, o) Cost Estimates (u, o)
Risk (4.9, 3.8) Risk (19, 13.5)
Effort (669.0, 372.6) Effort (1275.6, 835.41)

Main Risk Contributors Main Risk Contributors
Avoid Left 54 % Avoid Right 44 %
Avoid Right 24 % Avoid Left 31 %
Evasion 22 % Evasion 20 %

(a) Stone Block (b) Ring of Seats

Figure 3.25: Cost estimates for two different real obstacle configurations

annotations are more spread out than in simulation (figure 3.26), which results in a larger
variance of the cost measure. This can be attributed to the influence of sensor noise and
mechanical inaccuracies that cause additional variations. Furthermore, the ‘Ring of Seats’
is asymmetrical, as the stone block only poses a problem when the seat ring is traversed
around the left side. As a consequence, further spread of the cost estimates must be
expected.

3.7.3 Qualitative Analysis

In the second set of experiments, the performance of the proposed topological map scheme
and edge cost learning was tested in a larger environment. These experiments were con-
ducted to allow a qualitative analysis of the benefit that can be drawn from the proposed
method for the optimization of path planning in a given topological map.
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Figure 3.26: Individual cost annotations for the real scenarios

3.7.3.1 Simulation

Figure 3.27 shows two views of the scenario, which was modeled after the testing area used
for the real world experiments. As can be seen, the simulation contains several realistic
obstacles such as trees, bushes, street lights or the already presented ring of seats. To
further increase the challenges for the obstacle avoidance layer, the center of the scene has
been obstructed with a set of (not so realistic) large stone blocks forming an irregularly
shaped but approximately convex blocked area.

(3) )

Figure 3.27: Initial state of the qualitative evaluation scenario

The overlaid topological map initially contained only speculative (blue) nodes and edges
without cost annotations. It has been generated from supplied corner nodes through
recursive midpoint subdivision of the corner node connection edges. The grid structure
contains 273 short edges (with lengths between 5-7 meters) and thus allows to learn a
relatively fine grained estimate of the travel costs. Its regular layout does not introduce
any additional knowledge about suitable routes or good placement of topological nodes.
The initial map consequently happens to contain two unreachable nodes, one inside the
central stone group and the other inside the ring of seats. As can be seen especially well
in figure 3.27b, the scene is not entirely planar, but contains a significant slope close to
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one side of the bridge. Also, the walkway embedded into the grass lies a little bit lower
than the surrounding terrain. The effective offset varies along the outline of the path and
forms a negative obstacle for the robot at some places, while other areas are passable.

During the experiment, the developed navigation scheme has been used to generate path
traversal commands between randomly selected map nodes. In order to collect edge cost
annotations as homogeneously as possible, the motivational state («, 3,7v,9) = (0,0, 1,0)
has been used for the path planner, so that an edge’s cost was maximally dependent on
its familiarity value, i.e. the number of already attached annotations. Thus, paths along
edges with few annotations have been preferred. As further parameters, a minimal node
distance of 3 m for node fusion, a target arrival distance of dy;..;va0 = 3 m and a traversal
failure timeout T%q; = 40 s was used.

Figure 3.28: Map layout after 1479 edge traversals

Figure 3.28 shows the map layout after a total of 1749 edge traversals (equivalent to ~ 6.6
traversals per edge, contrast and edge thickness has been altered for better viewability).
Evidently, most of the nodes were found to be reachable (green). Node relocalization
has displaced the speculative nodes around the stone blocks and the seat ring, as they
could not be reached well at their initial locations. The other nodes have remained at
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their original positions, as the robot could approach them precisely using the DetectTarge-
tArrivalWithPostponement algorithm. Most edges have also been identified as traversable
(green), with several interesting exceptions. As the two nodes inside the stone block and
the seat ring are not reachable, all attempts to travel along an edge leading to them
have failed. Consequently, these edges have been marked as untraversable (red) by the
RepresentFailure algorithm. Normally, this method also inserts a new node at the current
robot location. However, with the exception of one node near the upper-right part of the
seat ring, the introduced node was placed too close to an already existing node and has
therefore been fused with it by the node fusion step. The only remains of these fusions are
several new edge connections between previously unconnected nodes (e.g. from the upper
right to the lower left part of the stone block). This ultimately lead to the edge layout
that can be seen in figure 3.28. Finally, the area around the two rightmost corner nodes
was not well accessible for the robot because of some narrow obstacle configurations and
kinematic constraints when the pilot was requested to turn around in a tight spot. Thus,
some of the initial edges have also been marked as impassable.

Figure 3.29: Hot-cold map of learned risk costs
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Figure 3.29 shows a hot-cold map of the learned risk cost factors. Increasing risk costs are
visualized using ‘hotter’ colors, e.g. risk values increase for the color sequence black, red,
yellow, white. Overall, it can be seen that the higher estimates are distributed around
obstacles, whereas free space is measured as having no risk (the edges have black color).
This qualitatively correct impression of the map exhibits two interesting peculiarities.
First, the new edges that have been introduced by the failure representation and node
fusion steps (marked in the close-up figure 3.30a) have been judged as extremely high
risk connections. This can be explained by the fact that these edges are generally over
twice as long (~ 12 m) as the initial edges and run across the most prominent obstacle
configurations. Thus, although the pilot has apparently been able to travel along these
edges, they are not a good alternative to using the already known sequence of original
edges when risk is a significant cost factor. Second, the edges that cross the walkway in the
upper part of the test scenario are predominantly marked with a medium risk, although
no prominent proturing obstacle is visible in the vicinity (figure 3.30b). Upon closer
examination, it turns out that the navigator has observed the pilot’s obstacle avoidance
reactions to negative obstacles at these places. This reaction has been triggered by the
fact that the walkway is placed somewhat below the level of the surrounding grass (see
figure 3.27b), creating steps that need to be circumvented in the otherwise apparently
smooth terrain.

(a) New high risk edges (b) Risky walkway crossings

Figure 3.30: Two risk peculiarities

Similar to the presented risk estimates, figure 3.31 shows a hot-cold map of the learned
effort costs. Because the edges have similar lengths, the energetical effort estimates are
relatively uniform. A noteworthy exception to this is the lower left area of the test
environment. Here, the effort estimates exhibit a pronounced asymmetry between edges
running in opposite directions. As can be seen in the close-up (figure 3.32), this part
of the test environment is rather sloped, and the topological cost learning algorithm has
correctly observed that edges running downhill are energetically much cheaper than those
leading upwards.

Apart from that observation, some correlation between higher risk and a higher effort can
be made out from the hot-cold map. The high-risk edges around the stone block also
exhibit a high effort, similar to the edges close to the badly accessible corner nodes. How-
ever, little additional effort seems to be caused by the negative obstacles of the embedded
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Figure 3.31: Hot-cold map of learned effort costs

Figure 3.32: Asymmetrical effort estimates on sloped terrain
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walkway. Evidently, these obstacles could be circumvented with less additional move-
ments (and thus, less effort) than the more pronounced obstacle configurations mentioned
before. Visual inspection during the traversal of these edges confirm this interpretation.

Terrain encountered along Edge

Any Free (R <1) Obstructed (R > 1)

Number of Edges n 266 189 (71%) 77 (29%)
Total Risk SR 267 26 240
Total Effort >W 73192 49384 23807
Total Familiarity > F 1749 1223 526
Avg. Risk S R/n 1.00 0.14 3.13
Avg. Effort Y W/n 275.6 261.3 309.2
Avg. Familiarity > F/n 6.6 6.5 6.8
Median Risk o

Variation Coeft. med {/‘_} ) i 61%
Median Effort o

Variation Coeft. med {ﬁ} 18% 13% 21%

Table 3.6: Cost statistics for simulation scenario

Table 3.6 summarizes some interesting statistical properties of the cost annotations in-
serted into the map. The first column lists the total and average of the three cost factors
for the 266 edges of the entire map. In the second and third columns, the edges are
separated according to the estimated risk R into edges that run along predominantly free
terrain (R < 1) and edges that contain more severe obstructions (R > 1). It can be
observed that the simulation scenario is made up of about 70% low-risk edges, which have
an average risk of only 0.14 and account for only 10% of the total risk costs. The 30%
high-risk edges consequently cover the remaining 90% of the total risk with an average
of 3.13 per edge. From these figures, it can be concluded that risk is indeed distributed
rather unequally across the map. In contrast to this, the effort cost variations between
free and obstructed edges are more moderate, with average values of 261 and 309, respec-
tively. Thus, effort is somewhat correlated with risk (as observed before), but still retains
a significant amount of independence from the other cost factor.

A further interesting piece of information can be learned from the median variation coeffi-
cients listed in the bottom part of the table. The variation coefficient of a distribution
is defined as the distribution’s standard deviation divided by its mean. In this way, it is a
measure of the relative dispersion of the underlying distribution, independent of the nu-
merical scale of the mean value. Since one variation coefficient can be computed for each
edge, the table presents the median of all variation coefficients to give an impression of
the ‘typical’ spread of the cost annotations for that edge subset. The median is used here
because it is more robust against outlier values than the arithmetic mean of the variation
coefficients.

From the presented values, one can gain an impression of the overall cost consistency
between multiple traversals of the same edge. For the effort cost factor, the median
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variation coefficient of 13% indicates that the overall effort cost observations are typically
distributed rather tightly around a well defined mean value. This supports the idea of
the proposed cost learning scheme and also eases the prediction of effort costs (a topic
that will be addressed in the next chapter). That benign property even holds for the
obstructed edges where trajectories tend to be disturbed more strongly and deviate more
from the ideal line of sight. Here, the median variation coefficient rises to 21%, but still
remains comparably low.

Unfortunately, the same cannot be stated for the median risk coefficient of 61% of the
obstructed edges. Apparently, the risk costs fluctuate much more wildly between cost
annotations for these edges than the effort costs. A possible reason for this is the im-
pact of sensor noise on the obstacle detection algorithms which are the foundation of the
avoidance behaviors reactions and thus, the observed risk. The measurements for these
exterioceptive behaviors probably contain much larger noise than the data for the pro-
prioceptive behaviors responsible for effort costs. As a final note, the missing entries for
the low-risk edges or the complete set are caused by the fact that the variation coefficient
becomes meaningless for distributions with a mean close to 0 (as the divisor approaches
this value, the coefficient approaches infinity) and are therefore omitted.

In the last part of the qualitative evaluation, the effect of the learned edge traversal costs
on path planning itself has been examined. For this, the topological path planner has been
prompted to generate paths from the the low left corner node towards the upmost right
node that minimize either a) plain metrical distance, b) the learned risk costs or ¢) the
learned effort costs. The paths were generated by using either the initial, unannotated
map for planning (as will be presented in chapter 4, cost estimation for a completely
unannotated map falls back to a distance based metric) or setting the motivational states
(1,0,0,0) and (0,1,0,0) on the map containing cost estimates.

(a) Minimal distance path (b) Least risk path (c) Least effort path

Figure 3.33: Path planning using learned cost estimates

Figure 3.33 shows the resulting paths (marked white) of the three planning requests. As
can be seen, both the minimal risk and effort paths differ significantly from the one that
minimizes metrical distance. The minimal risk path is rather long and avoids all (positive
and negative) obstacles in the map by a safety margin. In contrast, the minimal effort
path is much shorter and exploits the steep downhill slope in the lower left part of the
scenario to conserve energy. However, it comes close to the tree in this area, skirts closely
around the central stone block and also takes an apparently more risky connection to
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cross the embedded walkway in the upper scenario part as the previous path. Overall,
this example demonstrates that the proposed cost learning strategy has really enabled
the robot to take both the occurring obstacles and energetically relevant terrain features
into account, without performing any direct sensor data interpretation. The gained cost
information can indeed be used to improve path planning and compute paths that are
advantageous compared to purely distance optimal solutions.

3.7.3.2 Real World

A final experiment has been conducted to evaluate the effect of cost learning on path
planning in a large real world scenario. Analogous to the last simulation experiment, three
different paths between the same start and end node have been planned using different
cost metrics. However, in order to decrease the amount of time needed for edge cost
learning, the initial map layout was substantially smaller than the regular grid structure
used for simulation. Figure 3.34 shows a panoramic image of the test area, overlaid with
the topological map that was provided to the robot prior to cost learning. To obtain the
path with shortest metrical distance, the path planner was then commanded to plan a
path from node 13 to node 7 using the unannotated, initial map. The result is marked in
the figure with thick, white arrows. Then, the robot was issued several dozens of random
edge traversal commands in order to build up the cost estimates.

Figure 3.34: Fish-eye view of testing area and overlaid topological map

The testing ground covers approximately 100 by 100 meters and exhibits a maximum height difference of about 7 meters.
The steepest part of the testing grounds (slope more than 20°) is located around node 3, while the most problematic

obstacle configurations are below the bridge around nodes 1 and 2.

After cost learning, the path planner has been requested to generate the connection be-
tween 13 and 7 that minimizes either the risk or effort cost sum. The resulting paths are
indicated in the picture with dashed green (minimal risk) and dashed yellow (minimal
effort) edges. The green path is the result of tuning the cost function towards an ex-
tremely ‘fearful’ state with («, 3,7,d) = (1,0,0,0), while the yellow, dashed path is based
on maximal ‘impatience’ with (a, 3,7,0) = (0,1,0,0). Both differ substantially from
the purely distance-based path. The yellow path saves energy by exploiting the steepest
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slopes around node 3 and using a relatively direct connection. This comes at the price of
traversing difficult terrain around node 1. In contrast to this, the green path contains a
lot of lengthy detours in order to avoid this area and the vicinity of the hedge (11 — 13).
Both paths are intuitively plausible in the context set by the motivational state.

3.8 Conclusion

This chapter introduced a topological map variant containing nodes and edges with type
information as fundamental data structure for large scale navigation in rough outdoor
terrain. For this map, algorithms have been developed to effect movement along a series
of map edges with minimal swaying, the robust detection of successful and unsuccessful
arrivals at target nodes and techniques for map consolidation once speculative information
is replaced by real experience. Furthermore, a three-dimensional cost measure suitable to
record the cost factors that are most significant in outdoor terrain has been proposed. In
order to estimate consistent edge traversal costs even though the topological navigation
layer does not know the actual robot trajectory for a given edge in advance, a novel a pos-
teriori learning scheme has been developed. This cost learning method observes the local
piloting behaviors during motion and integrates the observations afterwards into scalar
cost information. Finally, the quantitative and qualitative performance of the developed
methods have been evaluated in a series of simulation and real-world experiments.

The obtained results document that the proposed method is capable of building consistent
map edge costs starting from an initially unannotated topological map. The presented
basic navigation capabilities enable the topological planner to generate paths that are
cost optimal according to a motivational state set by the user in response to the current
mission requirements. It also allows the system to refine the map during robot operation
to optimize node positions, while guaranteeing a maximal node density. Untraversable
connections are detected and excluded from further path planning.

With the presented capabilities, the system suffices for tasks that take place in an ap-
proximately known environment. In such scenarios, the operator can provide an initial
topological map (possibly based on aerial imagery) which contains appropriate navigation-
relevant nodes and viable path alternatives. The mobile robot can then start to carry out
navigation tasks between nodes as required by the assigned missions, while simultane-
ously building up cost estimates for the topological edges and optimizing path selection
over time. Possible areas of application of such a system include repetitive transporta-
tion tasks (e.g. on construction sites), patrolling of borders or large corporate estates or
the continuous monitoring of environmentally relevant parameters in a large, vegetated
environment.

However, the need for an initial map and the inability to extend the topological structure
with new connections prevent the topological navigation system from being applicable
for exploratory tasks such as autonomous reconnaissance or scouting missions. These
limitations will be addressed in the next chapter.



4. Edge Cost Prediction and Map
Extension

Up to now, the topological navigation system presented in the last chapter is limited to
work within a given map and needs to traverse the available edges first (in order to learn
cost estimates) before good path planning can be performed. These limitations do not
allow the application of the navigation system for exploration and map building, or even
a cost-efficient operation in environments where only a fraction of the edges has been
explored and cost annotated.

In order to overcome these limitations, two questions must be answered:

e How to predict the traversal costs of speculative edges that have not been traversed
yet?

e How (and where) to extend the topological map in order to reach a previously
unreachable goal?

It turns out that both questions are closely related. Given the ability to estimate costs
for new speculative edges correctly, map extension toward an up-to-now unreachable goal
can be achieved by considering a set of possible additions of edges and nodes, estimating
their costs, and finally choosing the alternative that results in the cheapest path. Thus,
the remains of this chapter first treats possible solutions for the first question and then
approaches map extension based on the obtained results.

4.1 Speculative Edge Cost Estimation

This section deals with speculative edge cost estimation, e.g. the task of predicting the
travel costs for an edge that has not been traversed yet. As has been touched briefly in the
last chapter, any potential approach to this question must be based on assumptions about
the trajectory that will emerge once the navigator has commanded the edge transition.
If no patterns or similarities between edges and resulting trajectories were present, the
transfer of knowledge from other, already annotated links or the incorporation of metrical
sensor data would not be possible.
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Fortunately, experience shows that some assumptions about probable trajectories given
an edge’s start and end node are valid in most cases. For example, if the space between
two nodes is mostly free of obstacles, the behavior-based pilot will travel along the line
of sight because this is the shortest possible connection. Furthermore, the overall terrain
layout often does not change abruptly, so that the experienced costs for two neighboring,
approximately parallel edges are usually similar. Of course, these relations do not prevail
in the presence of obstacles or other local terrain features that only affect some of the
edges under consideration. In order to predict the correct cost in this case, it becomes
necessary to obtain sensor data of the terrain which will likely be crossed during edge
transition and perform a real traversability analysis. However, as the pilot’s reaction to
obstacles remains a ‘black box’ behavior and cannot be modeled well in advance, the cost
estimates stemming from traversability analysis must be interpreted with caution. Their
primary value lies in the capability to qualitatively favor edges across unblocked terrain
over those that contain obstacles when considering different route alternatives.

Four methods were developed in the scope of this thesis in order to predict speculative
edge costs. All methods draw upon existing data stored in the topological map and
extrapolate it to generate a cost estimate for the edge in question. However, the locality
of the used data varies broadly, as shown in the overview in figure 4.1. While the most
general estimation technique exploits all information stored in the entire map to generate
a global cost model (figure 4.1a), the second approach builds a more restricted, local
cost model using only cost annotations from spatially close edges (figure 4.1b). The trend
toward increasingly local information continues with the remaining two techniques. The
third method requires that the start node of the estimation candidate has been visited
before and a metrical traversability map of the surrounding terrain was constructed
(figure 4.1¢). This traversability information is then incorporated into the cost estimate
to account for local obstacle configurations that might have been missed by the global
or local cost models. Finally, the edge inversion technique takes the known transition
costs of the estimation candidate’s inverse twin (running from its end to the start node)
as the most definitive and local data source for cost extrapolation (figure 4.1d).

The rationale behind using not only one, but four different methods for speculative edge
cost estimation is that all of these methods need different input data in order to work.
As will be shown in the evaluation (sec. 4.1.5), the amount and locality of the required
information correlates with the precision of the cost prediction. Thus, by choosing the
most powerful method that is applicable given the available data, it is possible to use
the best and spatially closest source of information within reach to estimate an edge in
question.

4.1.1 Global Cost Model

In the worst case, the navigator needs to estimate the cost of an edge e that lies in an area
which has not been explored by the robot at all. Consequently, no sensor data will be
available for the adjacent terrain and edges in the vicinity will contain no cost annotations.
Thus, the cost estimation for e cannot be based on any local source of information.

In such a situation, the only known helpful properties of e are the metrical positions of
the edge’s start and end node. From this, the line of sight distance d. = d(e.n.p, e.n’.p)
between the nodes can be computed. Now, assuming that the pilot will travel through
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(b) Local cost model

(c) Local traversability map (d) Edge inversion

Figure 4.1: Four strategies developed for speculative edge cost estimation
All strategies extrapolate data from the topological map to predict costs for a speculative edge (blue
with a white outline). However, the locality of the source data ranges from an entirely global
perspective (figure 4.1a) to an extremely local scope based only on the inverse edge (figure 4.1d).

predominantly free space, the length of the emerging trajectory will be very similar to
d.. Furthermore, assuming that the pilot will ‘behave normally’ during transition, the
resultant costs for e will be similar to those incurred by other trajectories of comparable
length that have already emerged for edges in the rest of the map. Therefore, a very
coarse estimate for e can be derived by establishing a global relation between trajectory
length on the one side and probable risk and effort cost factors on the other side. As both
the expended energy and the probability of encountering obstacles increases with a longer
trajectory, at least some positive correlation of these entities should be observable.

To construct a plausible model of this relation during robot operation, the estimation
algorithm needs to have access to measurements that link trajectory length with cost
factors. Such measurements can be obtained by using the experience gained from previous
edge traversals recorded in the topological map. For this, the edge annotation method
presented in the last chapter has to be extended. In addition to storing risk and effort
values for each new cost annotation, the length of the driven trajectory is recorded. This
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length can be determined easily by integrating the differences between the robot poses
pVES(t) while stepping through a behavior observation log (cf. section 3.7.1). With this
extension, each edge traversal does not only produce a new cost annotation, but also

generates a new sample for modeling the node distance vs. cost relation.

Figure 4.2 shows the results of applying this technique to all edge traversals performed
during the experiment described in section 3.7.3.1. The two plots show the effort and risk
values of all 1749 generated cost annotations plotted against their corresponding trajectory
length.
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Figure 4.2: Trajectory length / cost data pairs derived from edge annotations

The scatterplot in figure 4.2a gives some indication of a linear relationship between the
learned effort values and the trajectory length, although the diagram also contains a sig-
nificant amount of outliers. These can probably be attributed to the influence of different
slopes or varying travel speeds caused by obstacles which are not accounted for in this
model. The degree of linear correlation between the n measured pairs (I;, w;) of trajec-
tory length [ and effort w can be estimated mathematically by computing the sample
correlation coefficient r;,, according to the formula

o "Zwili_zwizli
L Xt (e a e - ()

where ) is a shorthand for )" .

In general, the sample correlation coefficient between two variables can range from —1 to
1. A value of 0 indicates that the two variables are linearly independent, values of 1 or —1
are evidence for a perfect proportional or antiproportional relationship ([Bronstein 81],
sec. 5.2.4). For the depicted data set of trajectory length and effort, the correlation
coefficient r;,, is equal to 0.7829, which indicates a pronounced linear correlation between
both variables. Therefore, it appears promising to fit a linear function to the obtained
samples in order to determine a relation between trajectory length and effort.

(4.1)

Unfortunately, the plot showing risk and traveled distance in figure 4.2b does not exhibit
an equally apparent linear behavior. Instead, both variables appear to be largely uncorre-
lated to the human eye when considering the diagram. However, the correlation coefficient
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71 of 0.6085 indicates that although the relationship is weaker than with the effort cost
factor and does not appear in the scatterplot (probably due to saturation of the diagram
with many closely spaced points), some linear correlation does also exists between risk
and trajectory length values. The construction of a linear model still appears to hold
some merit.

The coefficients of this linear model can be estimated using linear regression. For this,
the function f,({) which computes effort values from a trajectory length [ is assumed to
be of the standard form f,(I) = a,l + b,. Given the data set with n pairs (I;,w;), the
coefficients a,, and b,, can be estimated using the least-squares optimal solution given by

n

S - 1)°

i=1

by = W— a,l (4.3)

with  denoting the mean length ETZ and w the mean effort ZTU’

However, the standard least squares solution is susceptible to the influence of outliers,
which can seriously distort the estimated function parameters. Figure 4.3a shows an ex-
ample for this behavior. Here, two outliers that lie far away from the remaining, approx-
imately diagonally distributed point set cause the least-squares optimal linear solution to
have an incorrectly low slope. As a result, the linear regression models neither the linearly
distributed points nor the outliers well.

O O Ny .."[nlieI“S .
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(a) Standard solution (b) RANSAC solution

Figure 4.3: Linear regression in the presence of outliers

In order to reduce the impact of outliers on the estimated linear function parameters,
the use of the RANSAC algorithm is proposed [Fischler 87]. This approach proceeds by
computing tentative values for the parameters a,, and b,, from two randomly picked pairs
of the data set. Then, all data pairs with an euclidean distance smaller than a threshold e
to the line given by a,x + b, are considered inliers and added to the inlier set R, all other
points are classified as outliers. After several iterations of this process, the parameters
supported by the most inliers are selected. Finally, a,, and b, are recomputed according
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to equations 4.2 and 4.3 using only the inlier set R as data source. See figure 4.3b for
an example of the typical result obtained after using RANSAC on the toy data set from
figure 4.3a.

The application of the RANSAC regression to the collected effort and risk samples from
figure 4.2 results in the linear functions depicted in figure 4.4, with parameters listed in
table 4.1.
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Figure 4.4: Linear trajectory length / cost models

Cost Factor  Function a b
Risk fr) =arl + by 0.08 —0.56
Effort fw(l) =awl+by 27.98  28.18

Table 4.1: Estimated parameters for global cost model

As can been seen, both estimated model slopes are positive, agreeing with the intuition
that longer travels are more costly. The negative offset for the risk model is more in-
teresting. It is a result of the fact that the source data does not contain any trajectory
that is shorter than approx. 5 meters (the spacing of the initial grid used in simulation),
and many of these have been annotated with a risk of 0. Thus, the linear model does
indeed produce the most accurate prediction for the existing data if it crosses the x-axis
right at an input value of around 5 meters. This behavior is not harmful and can be
neglected as long as the navigator does not need to estimate any edge that is shorter
than the shortest edges in the model’s training set. In such a case, the resulting negative
risk prediction must be capped to not confuse the path planning algorithm. However,
after a few successful traversals of such short edges, the regression model will adapt itself
automatically.

Coming back to speculative edge cost estimation, the constructed global model could
now be used directly to generate a prediction for the speculative edge e by plugging the
node distance d, = d(e.n.p, e.n’.p) between e’s start and end node into the linear models,
yielding the estimated costs (f,(de), fw(de)). However, this assumes that the trajectory
length is equal to the node distance, which is unrealistic for most situations. Luckily, an
improved connection between node distance d. and resulting trajectory length [, can be
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established easily by using the presented outlier-robust regression technique again for this
pair of variables'. The required data pairs (d.,[.) are contained in the topological map
and the existing edge annotations, so that a linear function f;(d) = a;d (an offset is not
required in this case) can be constructed analogously to the computation of f,(l) and
fr(1). Figure 4.5 shows the results of applying this idea to the simulation data.
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Figure 4.5: Linear trajectory length / node distance model

The optimal function has been estimated as f;(d) = 1.07d, indicating that on average,
the operation terrain is traversable and the emerging trajectories are relatively direct.
However, the plot in figure 4.5 reveals that significantly longer trajectories do also exist,
which have been classified as outliers and thus not incorporated into the model.

With the help of the regression model linking node distance and trajectory length, the
‘global model” speculative edge cost estimation strategy can be finalized. Given a specu-
lative edge e and the corresponding node distance d,, the cost prediction for e using the
global model heuristics is computed as C = (£;(fi(de)), fw (fi(de)), 0).

4.1.2 Local Cost Model

The global cost model presented in the last section is extremely coarse, as it is based on
the assumption that any map edge with similar node distance as the estimation candidate
will also have similar costs. The approach suffers from two distinct disadvantages. For
one, the sole use of distance values as input information cannot account for any local
peculiarities such as obstacles at all. For another, it implicitly assumes that the terrain
is uniform over the entire operation area. Therefore, the global model can also not cope
with variations having a spatially moderate extent such as a grassy meadow containing
some paths or open spaces (where travel is less risky than in the vegetated areas), or hilly
terrain with smoothly changing effort costs. This lack of precision is set off by the fact
that the model does not depend upon any ‘special” input data and can be computed as
soon as the map contains any cost annotations.

Tt would also be possible to compute the relation between node distance and costs directly, instead
of the presented approach which splits the process into two steps. However, it was decided to stick to
the two-step process, as the models constructed in this fashion are more flexible and can also be used for
other tasks besides speculative edge cost estimation.
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With the global cost model in place as a fallback mechanism, it is possible to devise
improved cost estimation methods for cases that meet certain requirements on the infor-
mation available in the topological map. For example, the inability of the global model
to cope with moderately large variations in terrain characteristics can be countered by
constructing a local model that uses only cost annotations from edges that reside close
to the speculative edge in question. This of course requires that nearby edges already
have sufficiently many cost annotations and thus, that the robot has already visited that
general area of the environment before.

In order to construct such a local cost model, it has to be decided which edge is ‘close’
enough to the estimation candidate e to supply cost annotations for the model construc-
tion. Since edges themselves do not provide metrical information, this decision is based
on the positions of the edge start and end nodes instead. Given a parameter r that de-
termines the size of the local neighborhood, two sets of nodes are constructed. The first
set N is filled with all nodes that are within a target distance of r of e’s start node n.
Likewise, the second set N’ includes all map nodes within range r of the end node n’ of
the estimation candidate e. Now, all edges e; are selected for the construction of the local
model which fulfill both the condition e;.n € N and e;.n’ € N'.

Figure 4.6: Eligible edges for local model construction

Figure 4.6 illustrates this selection process. The local neighborhood of the estimation
candidate’s start node n is highlighted in yellow, the surrounding of the end node n’ is
marked purple. To satisfy the demanded conditions for both edge nodes and be considered
‘local’, an edge must therefore start in the yellow and end in the purple area. All compliant
executable edges in the figure are indicated in green, while all other edges have been grayed
out.
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In the next step, it is assumed that the local edges allow the construction of a stable local
cost model whenever the sum of contained cost annotations exceeds a threshold A™". In
this case, linear regression models f,,, f. and f; are constructed just as described for the
global cost model, but this time using only the annotations taken from the local edges.
Finally, the transition costs for e are predicted as C' = (f,(fi(de)), fu(fi(d.)),0) using the
local regression models.

The last remaining question in the context of the local cost model construction is how to
determine suitable values for the parameter r specifying the size of the local neighborhood
and the threshold A™™" specifying the minimal number of annotations. While it has been
found empirically that useful values for A™" lie around 6 — 10 in most cases, the selection
of r is more critical. A good choice depends upon the variability of the target terrain and
the overall edge density of the topological map. Thus, a truly optimal value for r can not
be provided in advance.

However, it is at least possible to formulate a parameter selection method that determines
good values for r given a sufficiently well annotated map to work with. Its core idea is
to measure the quality of a given local model with neighborhood size r by computing the
difference between the real costs of an executable map edge and the cost prediction that
would be done by the model, if that edge was speculative. More precisely, the so called
leave-one-out error for an executable edge is determined as the difference between the
known edge cost vector C' (for § = 0) calculated from the edge’s annotation set A (see
sec. 3.5.6) and the cost estimate obtained by temporarily setting A = () and applying the
local cost model prediction to that edge. After considering all edges in turn, the obtained
errors are summed up into a total prediction error value. This process is repeated with
different values of r and the one that corresponds to the minimal sum of the leave-one-out
errors is selected as the optimum.

In the following, the proposed parameter selection method is applied to the simulation
scenario data set to determine a suitable value for r. Figure 4.7 shows the total leave-
one-out error sums for risk and effort cost predictions obtained using the local cost model
with varying neighborhood sizes. Each graph contains three plot lines. For reference, the

300 - ‘ ‘ ‘ ‘ ‘
§ S 25000 ) 1
o 250+ w o e
c S 20000 e |
e S B
g 200} o A d St
S S 15000
S 150+ a
X S 10000+
7} | <
& 100 E
< L local m. + global m. fallback ——| | ‘© 5000 - local m. + global m. fallback ——| 4
50 S
o local model only s} local model only
= global model only - = global model only -
0 . : ‘ ‘ ‘ 0 X : : : :
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Local Neighborhood Size [m] Local Neighborhood Size [m]
(a) Risk prediction error (b) Effort prediction error

Figure 4.7: Local model cost prediction errors for varying neighborhood size

errors obtained using the global model are plotted in dashed black. The errors incurred
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by using only the local model are marked by a green line. However, this graph must
be interpreted carefully, as the local model requires sufficiently many nearby annotations
and thus can not always be applied to all edges. Therefore, the total error of the local
model is misleadingly low especially for small neighborhood radii, because the error is not
summed over the entire set of edges. In order to compensate for this deficit, the third plot
(solid red) shows the obtained errors from using the local model whenever applicable and
falling back to the global model estimate otherwise. Therefore, as long as r is so small
that no edge can be estimated using the local model, the red line coincides with the value
for the global model. Then, as the local model starts to be usable for more and more
edges (the distance between red and green lines drops), the total error sums fall below the
global model level. This drop proves that a real benefit can be gained from using the local
model cost estimation technique and also quantifies its size. At a value of r = 16 m, the
local model can finally be computed for all edges in the topological map. Consequently,
the global model fallback becomes unused and the green and red plots merge. A further
increase of r causes the local model to become more and more ‘global’, and the error
values continue to rise toward the global model level.

The plot indicates that the best choice for r in the given scenario lies between 10 to 14
meters. For r = 11 m, the total risk prediction error using the combined local/global
cost model is 93% of the global model error, while the effort prediction error is reduced
to only 68%. It is not surprising that the benefits of the local model technique are more
pronounced for the effort cost factor, because the simulated terrain does contain ‘effort
variations’ of a size comparable with r (the slope near the bridge), but no similarily
scaled risk variations. The obstacles in the terrain are too small to be modeled accurately
even using the local model. Nevertheless, the leave-one-out evaluation proves that the
presented local regression technique can indeed generate more accurate cost predictions
in environments with cost variations of medium spatial extent.

4.1.3 Local Traversability Maps

Both the global and the local cost models can only use knowledge contained in already
existing edge annotations. Therefore, it is not possible with these techniques to react to
local anomalies that do only influence the costs of the speculative edge under question.
However, such a capability would be very helpful in many typical situations, for example
when obstacles obstruct the path between start and end nodes of the estimation candidate.

Unfortunately, a cost estimation strategy capable of dealing with local anomalies cannot
draw upon any data already contained in the current topological map. Instead, a new
type of information is required which links the terrain beneath a speculative edge with a
traversability measure describing how well that part of the environment can be passed.
In other words, a metrical traversability map of the surrounding terrain is needed.
Remembering the discussion of different map types from section 3.1, the use of a global
map such as a digital elevation model encompassing the complete operation area would
negate the positive properties of the topological map (such as compactness, efficiency
or robustness against low localization accuracy). Furthermore, such a design decision
would totally oppose the core concept of a minimal world model that underlies the whole
navigation system.

Thus, an extension of the current topological map toward a hierarchical, hybrid structure
similar to the approaches presented in section 3.1.3 is proposed instead. More precisely,
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the idea is to store the information required for improved cost estimation in multiple lo-
cal metrical maps, with each of them anchored at a topological node. The traversability
maps are designed to remain as abstract and high-level as possible in order to maintain
the current compactness and efficiency of the topological data structure. Therefore, no
metrical sensor data or similar ‘raw’ information is stored, but only risk / effort modifi-
cators for the terrain surrounding the anchor node, since this data is directly relevant for
cost computation. For ease of interpretation, the modificators are stored as normalized
scalar values ranging from 0 for the best traversable terrain such as flat, open space up to
1 for maximally steep, cluttered areas.

In the following, the layout of the metrical traversability map is presented in detail, along
with a description of how cost modificators can be retrieved from the piloting layer’s local
obstacle memory. Finally, the process of using the new information for speculative cost
estimation is described.

4.1.3.1 Map Layout

Most established systems that use hybrid maps choose a standard grid layout for the
local, metrical component. While this segmentation models the environment with constant
resolution, the sensor coverage of grid cells inevitably degrades significantly with increasing
distance to the robot due to the characteristics of the employed sensor systems such as laser
scanners or cameras. This effect is usually tolerable because most systems are designed
for indoor operation and the local maps only need to represent spatially restricted spaces
such as rooms with sizes up to several meters. Additionally, these systems often use a
SLAM based map building procedure to construct the local maps and synthesize data
from different viewpoints until the map accuracy becomes uniform.

However, the grid layout is not an optimal choice for the envisioned application in large-
scale off-road terrain. For one thing, the abstracted information that is to be stored in
the local traversability maps does not support SLAM well. Thus, the map must be con-
structible using a single sensor snapshot, preferably taken from the central node position.
For another thing, the environment to be modeled is much larger, and visibility of grid
cells far from the robot is likely to be very poor. Therefore, a different map layout is
proposed, which partitions space into sectors with constant angular extent. Each sector
is further subdivided into seclets (or patches) of constant metrical length. The resulting
map somewhat resembles a spider web and is illustrated in figure 4.8. This segmentation
reduces the impact of larger distances on the sensor coverage, because each seclet is cov-
ered by an image region with constant width (if cameras are used as data source) or a
fixed number of range measurements (if laser scanners are used). Also, traversability in a
given direction can later be computed easily by sequential inspection of all seclets in the
corresponding sector.

Each seclet stores scalar modifiers for risk and effort cost factors that characterize the
underlying terrain patch. Additionally, it also keeps track of two certainty measures
which express the confidence about the modifiers as estimated by the generating algorithm.
These certainty values can be used well to model partial knowledge of the terrain. By
setting a confidence of 0 for a seclet, missing information about that area is indicated.
Definition 4.1 formalizes the components that constitute a local traversability map.
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Figure 4.8: General layout of a local traversability map

Definition 4.1 (Local Traversability Map) Given an angular sector size ¢, a seclet
width | and a number of seclets per sector L, a local traversability map M is defined as
a list of i = 27 /¢ sectors Sy . .. S;_1, with each sector being a list of L seclets sy...sp 1.
Each seclet contains

e a pair of cost modifiers (r,w) with 0 < r < 1,0 < w < 1 for risk and effort cost
factors

e a pair of confidence values (0,.,0,,) with 0 <6, < 1,0 < 6, <1 that expresses the
reliability of r and w, respectively.

To attach the local traversability map to a topological node n, the map origin is set to the
node position by creating a node local coordinate system NC'S at n.p. The transformation
MESS to the earth coordinate system is computed using the SetupCSWithZAxis function
introduced in section 2.3.3 and executing M£SS = SetupCSWithZAxis(n.p, (0,0, 1), n.p)
with the NCS origin position n.p. Using MESS, the indices S and s of the sector re-
spectively the seclet corresponding to a ECS position p in n’s local traversability map is
determined by:

P = (Myes) B (4.4)

d = \JBNOS + (705 (45)
~NCS

vy = arctanﬁiNcs (4.6)

5= MMJ @)

oo | as
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4.1.3.2 Including the Local Obstacle Memory

In order to fill the local traversability maps with cost modificators, the navigator can
either use the robot’s available sensors and perform a traversability analysis of the terrain
surrounding the anchor node by itself or it can reuse the data interpretation that has
already been done by the pilot. The second approach seems to be simpler and more effec-
tive at this stage, because the pilot maintains a local memory which can be conveniently
tapped to provide the required information about obstacles and passable areas. Figure
4.9 shows an example of this data.

(a) Scene (b) Local obstacle memory

Figure 4.9: Local obstacle memory of the pilot

Figure 4.9a shows the original scene and the corresponding memory that has been con-
structed by the pilot using a turnable range finder (see [Hach 07] for details) is depicted
in figure 4.9b. As can been seen, the map is centered at the robot (the blue rectangle) and
contains sample points indicating free space (empty black circles) as well as representations
for obstacles of varying severity (filled brown and red dots).

The pilot also performs an abstraction from the raw metrical data in order to feed the
obstacle avoidance behaviors with appropriate information. More precisely, it splits the
map into sectors similar to those used in the navigator’s local traversability map, extracts
the closest obstacle for each sector and stores its position as a representative. In figure
4.9b, these representatives are visualized using red (severe) or yellow/green (less critical
obstacles) lines connecting the robot with the obstacle position. If no obstacle is found in
a sector, the longest range for which sensor data was available is stored instead (shown in
gray).

These representatives form a compact basis to fill the local traversability map with the
required cost modificators. First, the robot must approach the topological node whose
map is to be updated. Then, the data from the pilot’s memory is transferred. For this,

the robot pose p'and the positions 7; of each obstacle representative known to the pilot are

transformed into the node coordinate system. The line connecting the p’ NCS with T NCS

is sampled with a step size < [, and the seclet corresponding to the sample position
is determined using equation 4.8. The sample positions trace the path to the nearest
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obstacle for each sector. Since the pilot has determined that these areas are free, the
calculated seclet’s cost modifiers are set to (r,w) = (0, 0) to indicate optimal traversability.
Furthermore, as the pilot is expected to use the most recent and close-ranged information
available, the confidence values (6,,60,,) are maximized to (1,1). After the sampling has

been done for all sectors, the seclets at the obstacle representative positions 7; NCS itself
are treated. Their cost modifiers are set depending on the type of obstacle representative
that the pilot has detected there. Four different cases are distinguished, as shown in table
4.2.

Obstacle Type  Cost Modifier Description

None (0,0) sensor range exceeded (gray lines)

Rough Ground  (0.25,0.25)  increased terrain roughness (green lines)

Vegetation (0.5,0.5) potentially traversable using tactile creep (yellow lines)
Critical (1,1) definitely impassable obstacles (red lines)

Table 4.2: Types of pilot obstacle representatives

After this, all relevant information stored in the local memory of the pilot has been inserted
into the node’s traversability map. Figure 4.10 shows the result.

|/

Figure 4.10: Resulting traversability map

In the picture, seclet color is used to indicate the value of the risk cost modifier, ranging
from green for 0 to red for a value of 1. The opacity of the seclet corresponds to the
confidence value - 0 yields a totally transparent patch (like those that were outside the
range of the local obstacle memory), while a confidence of 1 makes the patch completely
oblique. As can be seen, the positions of the obstacles in the local vicinity of the node
have been recorded correctly as well as the presence of open space in other directions.
This knowledge can now be utilized to improve the cost estimation for speculative edges.

4.1.3.3 Edge Cost Prediction using Local Traversability Maps

The prediction of edge costs using the information contained in a local traversability map
must rely on relatively strong assumptions about the metrical trajectory that will emerge
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upon edge transition. Since there is no better guess available, it is assumed that the
robot will try to travel along the line of sight. Thus, all seclets that lie on the direct
connection between the edges’s starting point n.p at the map center and its end node n’.p’
will influence the cost estimate. Figure 4.11 shows a schematic drawing to demonstrate
the arrangement of these seclets.

Distance

21 4l 6l 81

Distance

Figure 4.11: Seclets relevant for cost estimation

After projecting both start and end position of the edge under question into the start
node’s NCS, the angle v and length d are computed according to equations 4.5 and 4.6.
Then, the two sectors S,,, S,, that lie closest to the line of sight connection of the two

nodes are determined using
g
= 4.9
b wa 4

e
Npes = N 270 (4.10)

1 if 7"682 .
— {n+ if n 0.5 (4.11)

N n —1 otherwise
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The inclusion of two neighboring sectors allows to perform linear interpolation according
to v and therefore avoid abrupt cost changes for small angle disturbances when ~ lies close
to a sector boundary. The interpolation weight w, of sector S,, is obtained by computing

15— res if r6820-5
w, = { fres 110 (4.12)

0.5 4+ n,s otherwise

Assuming that a function ComputeSecletCosts exists which returns the risk and effort costs
for a single seclet, the predicted cost for the complete edge can be calculated by adding
the estimates of all relevant seclets together and doing a linear interpolation between
sectors. The only partially crossed last seclet has to be handled separately, as is shown in
algorithm 7.

Algorithm 7: EstimateEdgeCostFromLocalMap

Result: Risk, Effort Cost Prediciton (r, w)

Int 4,00 HJ
Float last_frac « (d — immazl) /1
Vector2D cost_n « 0
Vector2D cost_-m « 0
// add seclet costs for sectors S, and S,
while i < 7, — 1 do
cost_n «— cost_n 4 ComputeSecletCosts (s, ;)
cost_m «— cost_m + ComputeSecletCosts(s,,;)
P—i+1
end
// account for partially covered last seclet separately
cost_n « cost_n + last_frac - ComputeSecletCosts(S,,,...)
cost_m «— cost_m + last_frac - ComputeSecletCosts (S, i,,..)
// linear interpolation between sectors

return w,- cost_n + (1 — w,)- cost_m

How can the function ComputeSecletCosts be implemented? In other words, what is the
cost of traversing a single seclet? The solution developed in this thesis is based on three
predetermined parameter vectors which quantify the costs ¢ = (¢,, ¢,,) when traversing

1. a definitely free patch: &/ = (¢ /7 ¢ fre)

2. a definitely blocked patch: &¥ecked = (c blocked bloc’“d)

7 ? Tw

3. an unknown patch: ¢° = (¢?,¢2)

T W

These three estimates are combined using bilinear interpolation to incorporate both the
cost modifier values and the accompanying confidences stored in the seclet. The inter-
polation is done so that a confidence value of zero results in the costs ¢° regardless of
the (in this case totally unreliable) cost modifier values. As the confidence increases, the
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resulting costs more and more approach a linear mixture of ¢/7¢ and ¢%o*¢?  weighted

according to the values of the cost modifiers. Mathematically, this is expressed by

e = O.(r-ctoked (1 —r). /™) +(1-6,) ¢ (4.13)

T

o = Ou(w-clo 4 (1 —w)- /™) + (1 —0,) c? (4.14)

w w

where (r,w) are the seclet cost modifiers and (6,,6,,) are the corresponding confidences.
This bilinear interpolation is graphically illustrated in figure 4.12.

A
r,w=1
E‘blocked
blocked
TQ
+ —
BNl unknown
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= free
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r, w=0
0 1

Confidence 6

Figure 4.12: Bilinear interpolation of seclet costs

With the interpolation mechanism in place, the task of computing suitable traversal costs
for a single seclet is reduced to the problem of choosing appropriate presets for the three
parameters ¢/, &0 and ¢bocked,

In the case of a totally unknown patch, the seclet map does not provide any additional
information. In this situation, it is sensible to fall back and rely on the best estimation
methods that were available before the introduction of the local traversability map, which
are the local and global cost models presented in the last two sections. With these, the
costs of a seclet can be computed using the regression functions f,, f,, and f; fed with the
metrical seclet width [, which leads to:

¢ = (f:(AD), fu(fi(1)) (4.15)

This choice guarantees that a completely empty (all seclets have confidence 0) local traver-
sability map produces the same cost estimates as if no map was present at all. Therefore,
the cost estimate does not exhibit an eventually problematic unsteadiness upon switching
from one prediction model to the other.

The remaining two parameters are more difficult to determine. It is intuitively plausible
to assign a very low cost to ¢/ such as (0, f,()) since the robot is expected to travel
through open space when ¢/ becomes dominant. However, experimental validation
using the leave-one-out error measure described in section 4.1.2 has given unsatisfactory
results for such a parameter setting. In fact, the total risk error values using this choice
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rise approximately 30% above the results obtained without the local traversability map.
It therefore appears that the pilot’s detection of free space is not very well linked with a
zero risk observation. A probable cause for this is that the pilot’s sensor interpretation
algorithms can detect some obstacle types (such as negative obstacles like holes or steps)
only within a very close range. These obstacles are consequently not always included in
the local obstacle memory, but do cause risk accumulation every time real edge transi-
tions occur. This discrepancy may explain the detrimental effect of an optimistic value
assignment for ¢/7¢¢. As a somewhat unappealing solution, the value of ¢° can be used
instead, implying that free space may contain (still undetected) obstacles just as unknown
terrain. This leads to the following assignment of the second seclet cost parameter:

glree = g0 (4.16)

A better course of action would obviously be to improve the obstacle detection algorithms
themselves in order to maximize the usefulness of the local traversability maps. However,
the detection of negative obstacles is exceptionally difficult over longer distances, so that
substantial improvements are unlikely to be attained with reasonable effort. It appears
more promising to improve long range traversability estimation instead in order to raise
the effectiveness of this cost estimation strategy. This topic will be addressed in the next
chapters. Therefore, the proposed setting for &/7¢¢ is retained for now.

The selection of the final parameter ¢%°¢*¢¢ is complicated by the black box behavior of

the piloting layer. Because no sophisticated model of the reactions to an encountered
obstacle is available, the total costs for a trajectory that contains a blocked seclet cannot
be predicted with high accuracy. Instead, it is simply assumed that a constant penalty
term is sufficient to summarize the average additional risk and effort costs induced by
the obstacle. Therefore, ¢%o*¢? is set to the cost for an unknown seclet plus a penalty

(pr, pw), resulting in the definition:

6blocked — 80 + (pm pw> (417>

To determine the best value for this penalty, the already established leave-one-out error
optimization technique (see sec. 4.1.2) is applied. The total error that is suffered when
predicting edge traversal costs based on local traversability maps is evaluated using varying
values for p, and p,,. Figure 4.13 shows the obtained results.

The figure reveals that the best predictions are obtained using a value of about p, = 3.25
as the risk penalty and a value of p, = 60 for the effort penalty. This completes the
selection of the seclet cost parameters and concludes the description of the map based
edge cost estimation technique.

Figure 4.13 also provides quantitative data on how much better the cost prediction based
on local traversability maps is in comparison to the previously best estimate achieved by
the local model (included in the figure for reference). With optimal parameter settings,
the total risk error is only 84% of the local model error. The maximal error reduction is
not as significant for the effort cost factor, leaving an error rate of 94% there. It can be
noticed that the magnitudes of the relative error reductions are reversed in comparison
to the introduction of the local model. Apparently, the local maps introduced in section
4.1.3 are better suited to treat rather small disturbances which primarily influence risk
costs on a very local scale. In contrast, the local model technique from section 4.1.2 is
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Figure 4.13: Prediction errors for varying seclet penalties

better suited for more global terrain characteristics which have a greater impact on the
observed effort. Thus, both cost prediction techniques exhibit complementary strengths
which can be combined to obtain an improved cost estimate.

4.1.4 Cost Transfer from Inverse Edges

The last strategy that has been developed for the task of speculative edge cost prediction
tries to relax the strong assumption made by the local map technique which expects the
pilot to travel directly between start and end nodes without taking significant detours. In
order to do so, the new strategy relies on the estimation candidate’s inverse twin as the
most local source of information available for a speculative edge. The inverse twin of a
given edge e connecting nodes n and n’ is defined as an edge that runs in the opposite
direction between the same nodes, thus starting from n’ and ending at n. Figure 4.14
shows an example.

Inverse twin of e

Figure 4.14: An edge and its inverse twin

As with the other strategies, an assumption must be made to justify the transfer of costs
from the inverse twin to the estimation candidate. It is assumed that the trajectories which
will emerge upon traversal of the estimation candidate will have a similar shape as those
which led to the inverse edge annotations (of course, the travel direction will be reversed).
However, if this belief is approximately correct, the cost transfer will allow accurate cost
predictions even if the trajectories contain detours, loops or other anomalies that violate
the inherent assumptions of the other cost estimation methods. On the negative side, this
strategy can only be applied if the edge that is to be estimated really has an inverse twin
which is already annotated.
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The cost transfer itself can be implemented as follows. For one, assuming the pilot gen-
erates similar trajectories for both edges, it can be anticipated to encounter the same
obstacle constellations during travel. Therefore, the risk prediction for the speculative
edge can be adopted directly from the learned risk of the inverse twin, e.g. its combined
risk annotation R (see section 3.5.6).

A good prediction of the effort cost factor is more complicated, since equal effort costs can
only be expected in flat terrain. For vegetated outdoor environments which are typically
sloped, a simple value copy would not yield satisfactory results. To overcome this problem,
the developed prediction algorithm first builds a model of how effort costs depend upon
the terrain slope. It then takes the inverse edge effort cost W and average trajectory
slope o and uses the model to extrapolate this data onto the estimation candidate. The
extrapolation part thereby assumes that the estimation candidate trajectories will have a
slope of —a.

In order to implement this strategy, the cost estimation algorithm first needs to build the
effort / slope model. In order to accomplish this, the cost annotation method from section
3.7.1 is extended once more to record the slope «; of each performed edge transition and
include it in the corresponding cost annotation. «; can be derived from the behavior
log obtained after an edge traversal using the difference in the WCS Z-coordinate of the
robot’s start and end poses pV%(ty) and pY¢S(t;) and the trajectory length [ that is

already computed for the global cost model. With this information, the calculation of o
is feasible using the equation:

P ()2 — 5" (o)
l

(4.18)

«,; = arctan

It is important to stress that this computation is not substantially affected by the drift of
the height estimates that has been identified as a problem in the context of node arrival
detection (see section 3.4.2). The main reason behind this is that the time between passing
the start position and arriving at the end pose is typically rather short. In this time frame,
the difference between the two WCS height estimates usually remains consistent with the
real height difference, although the absolute values might indeed be inaccurate.

Each extended cost annotation now contains information about the experienced trajectory
slope «;, length [; and effort cost w;. On the basis of this data, a linear regression model
can be constructed using the RANSAC algorithm introduced in section 4.1.1 to link a
slope s with the incurred effort per meter w/I. The use of this fraction factors the influence
of varying distances out of the model, which could otherwise only be accounted for by a
more complicated two-dimensional function.

Figure 4.15 shows the data set collected for the simulation scenario together with the
estimated regression function f,;(s) = 199.9 - s + 31.5. The function f,/(s) could be
used directly to generate an effort prediction for the speculative edge by taking the inverse
twin’s average trajectory length [ and slope o to compute [ - f,/;(—c). However, this
totally neglects the inverse edge’s effort cost annotation /W, which can contain valuable
information about any particularities encountered along the driven trajectory that has
been smoothened out by the linear regression function. To include W into the prediction,
Jwyi(s) is used indirectly. The effort prediction is produced by mirroring the inverse twin’s

costs (o, W) on the point (O,l - fuw /Z(O)) which signifies the expected effort for a trajectory
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Figure 4.15: Linear effort per meter / terrain slope model

with the same length as before but zero slope. This yields an cost estimate for the slope
—a that differs as much from the flat terrain case as the inverse twin’s original cost,
but deviates in the opposite direction, agreeing with the assumption that the estimation
candidate has a slope of a.

Mathematically, the estimated effort costs ¢, for the speculative edge is computed from [
and a using f,,(s) by

co = W+ (l-fw/l(o)—ﬁ/\> + <l-fw/l(())—W> (4.19)
— 2 fup(0) =W (4.20)

Figure 4.16 illustrates the derivation of this formula.

o (—CY, CW)
L+ fup(0) =W
Cost
L+ fup(0) =W
(. W) W

Slope

Figure 4.16: Calculation of inverse edge cost

4.1.5 Evaluation

To evaluate the performance of the four cost estimation strategies, their total and relative
prediction errors have been determined using the leave-one-out technique introduced in
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section 4.1.2 on the standard large simulation scenario. The resulting measures are listed

in table 4.3.
Risk Error Effort Error
Strategy
Absolute Relative Absolute Relative

Global Model 263.5 100% 23061 100%
Local Model 242.0 91.8% 16234 1%
Local Maps 206.7 78.4% 15388 66.7%
Edge Inversion  187.7 71.2% 10639 46.1%

Table 4.3: Prediction errors of the presented cost estimation strategies

The shown data provides proof for the claim made at the beginning of this section, stating
that the closer the source of cost information is to the speculative estimation candidate, the
better the overall cost prediction. Based on this observation, the preference of speculative
edge cost estimation strategies can be formulated as follows:

1. Use edge inversion, if an annotated inverse edge exists.

2. Use local traversability maps, if speculative edge’s start node holds local map.

3. Use local cost model, if sufficient annotations are found in local neighborhood.

4. Use global cost model.

This order ensures that the available information is optimally exploited and the speculative
edge cost estimation is done with the most accurate and powerful technique available.

Figure 4.17 shows the probability of generating a cost prediction within a given error
bound to highlight the accuracy that can be expected for single cost predictions.
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Figure 4.17: Probability of cost prediction with bounded error

Considering the fact that the risk costs for the examined scenario typically range from 0
to 15, while effort variations are scaled between —200 and 1000, the prediction of accurate
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risk costs appears to be notably more difficult than precise effort predictions. Since the
recorded risk annotations for a given edge (see table 3.6) are themselves already much more
variable, this effect is not surprising. Unfortunately, the lower stability of the risk cost
factor itself cannot be compensated by any cost estimation technique without dropping
the ‘black box’ assumption of the robot pilot. As this would violate one of the basic
paradigms of the robot control architecture examined in the presented work, this approach
is not considered as a viable solution. Instead, the limited capability to estimate the exact
quantity of risk costs has to be accepted. At a minimum, the developed techniques allow
to discern well traversable from less well traversable routes using the local traversability
maps, and can otherwise provide a sound prediction for typical risk costs. Additionally,
the cost learning guarantees that the estimated costs will be replaced with true experience
as soon as the speculative edge has been traversed. This ensures long-term consistency
even for the volatile risk cost factor.

Another peculiarity of figure 4.17 is the performance difference between the four estimation
strategies. For effort, the reduced prediction errors of the strategy sequence ‘global model
— local model — local map — edge inversion’ listed in table 4.3 reflects properly in higher
probability rates for these estimation techniques. However, the risk probability plots do
not exhibit a similarly large difference between the four methods. This gives rise to the
question where (if at all) exactly the more sophisticated strategies excel at cost prediction
compared to the less refined ones. The answer can be taken from figure 4.18, which is
another diagram showing the probability of a cost prediction within a given error bound.
This time however, only obstructed edges are considered, e.g. edges which have a true risk
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Figure 4.18: Probability of risk prediction with bounded error for obstructed edges

cost R of at least 1. In essence, the graphs in figures 4.17a and 4.18 reveal that all four
strategies are equally well capable of predicting the costs for terrain containing little or no
severe risk sources. Because the corresponding edges amount to ~ 77% of the total, the
prediction probabilities used in figure 4.17a is dominated by this class of edges, leading to
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minimal differences between methods. However, this changes when only the obstructed
cases are considered, as shown in figure 4.18. For edges that provoke obstacle encounterse,
the true merit of the more sophisticated cost estimation methods becomes visible.

4.2 Map Extension

The last section presented a set of techniques that can be used to predict edge traversal
costs for speculative edges, while exploiting the most accurate sources of information
available. Using this capability as a building block, the second question posed in the
introduction can be approached. The question addresses the topic of map extension, or
put more descriptively, how the topological map can be extended in order to reach a
previously unreachable place. This allows the robot not only to explore new parts of
the environment, but also to recover from failed approaches to already known nodes.
As described in section 3.4.5, such events are handled by the RepresentFailure algorithm,
which turns a traversable edge into an untraversable one. If that edge was the only known
way to access a certain node, the topological map must be extended with new connections
in order to make that node reachable again via a different route.

In contrast to many indoor applications, the operation environment of an off-road robot
is typically not enclosed by an impassable border such as a fence or a wall. Thus, ‘full
exploration’ strategies often proposed for indoor applications cannot be applied here.
Instead, map extension must be rather goal-directed, e.g. driven by the assigned task to
reach a previously unreachable goal.

In order to achieve this using the available capabilities of edge cost learning and prediction,
the developed map extension technique proceeds as follows. As input, it requires the
specification of a origin node n,,;, and a goal node n4,,; that define the start and end
points for map extension. It is assumed that there exists no valid path between n,,;, and
Ngoal UPON invocation of the algorithm. Figure 4.19 shows an example.

Impassable
bush

Figure 4.19: Exemplary start situation for map extension
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In order to make the goal node reachable via the topological map, a set of hypothetical
new routes is constructed which link these previously unconnected nodes. The routes
inevitably contain at least some speculative edges, whose costs are subsequently predicted
using the methods established in the last section. Finally, the cheapest new route is
selected and inserted permanently into the topological map. The other alternatives are
discarded. This strategy ensures that only minimal and necessary additions are introduced
into the map structure. This agrees with the concept of a minimal world model underlying
the thesis.

The next sections provide more detail on the task of hypothesis generation and present two
possibilities for the integration of the map extension technique into the existing navigation
system. At the end of this section, some experimental results are reported from both
simulation and a large-scale real world experiment.

4.2.1 Generation of New Route Candidates

The developed map extension algorithm chooses from two different classes of possible map
additions to decide which candidate realizes the ‘best’ new path between n,.;; and ngoq.
First, the insertion of a single new edge between already existing nodes is considered.
For this, new edges €,.,, between the origin node n,,;, or any node that is reachable from
it and ngeq are hypothetically inserted into the map. Then, the edge that allows the
construction of the path with minimal travel costs between n,,;; and 140 is determined.
This process is described more precisely in algorithm 8.

Algorithm 8: Route candidate generation I - Direct connections

Data: Graph G = (N, E) // the global topological map
Data: Set S // the set of valid start nodes

S — {norig} U all nodes n € N for which Path (nyg,n) exists
Edge best_edge « nil
Float best_cost «+ oo
foreach n € S do // main loop
if (n, ngoat) ¢ E then // don’t create duplicate edges
Edge Cnew (na ngoal)
E — FE U epew
Path P «— Path (1orig, Ngoal)
if Cost (P) < best_cost then
best_edge «— epew

best_cost « Cost (P)
end
E — F / epew
end
// extension for second candidate class will be inserted here

end
return (best_edge, best_cost)

Path(ny, ny) denotes a function that computes a Path P from node n; to node ny within
the topological map, if one exists. Costs(P) is defined as the accumulated cost of travers-
ing a Path P using the current motivational state, computed using both the available
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annotations and, if necessary, a suitable cost prediction technique. In order to let the
Costs function compute measures which allow accurate comparison with other alterna-
tives, the maximal cost factor values R™3X and W™MaX ysed for normalization are fixated
at their current values for the duration of the candidate generation. The algorithm checks
before insertion of a new hypothetical edge e,., if an edge already exists between the
nodes that would be linked. If so, that hypothesis is skipped. This ensures that the map
extension does not result in duplicate edges and that routes which have been marked as
untraversable are not used again. Figure 4.20 shows examples of the route candidates
generated by algorithm 8.

lrlorl'jg s~~~
eneu;

N goal

(a) Starting from g (b) Starting from n;

Figure 4.20: Route candidate generation I - Direct connections

The second class of route candidates is generated by splitting the edge e, set up by
algorithm 8 into two edges eq, e, and placing a detour node ny in between. Thus, if
€new Originally led from neig t0 Ngoar, €4 and e, would connect (nypig, nq) and (ng, Ngoar),
respectively. The position of ng provides an additional degree of freedom to construct
different route candidates apart from the choice of the start node for e,.,. In order to
focus on a manageable number of candidates, the positions of ny are chosen to lie at a fixed
target distance d from the start node of e;. Keeping this distance, different candidates
are generated by rotating n, circularly around the start node. As angular step for the
rotation, the sector size ¢ of the local traversability maps introduced in section 4.1.3.1 is
used. The rationale behind this approach is to take maximal advantage of the information
contained in the local map of the start node for the cost estimation of e;. By reusing the
angular sector size ¢, each sector of the local map is considered once as primary source of
traversability information during the evaluation of the ny candidates. Consequently, any
well traversable passage that is recorded in a sector of e4.n’s local map is detected with a
high probability. Figure 4.21 exemplarily shows the construction of some candidate routes
which contain detour nodes.

In order to compute the ECS position ng.p of the detour node ny using the current
rotation angle 1¢, a temporary detour node coordinate system DCS is set up using the
SetupCSWithXAxis function introduced in algorithm 2 (p. 19). The start node of the edge
eq is used as the origin of the DCS, the x-axis is determined by eq.n’.p'— eg.n.p. The ‘up’
direction is chosen as the WCS z-axis ¥, to minimize the tilt of the DCS with respect to
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N goal

(a) Two example detours starting from 7oy (b) Two example detours starting from n;

Figure 4.21: Route candidate generation II - Detour connections

the gravity vector. Combining these requirements, the transformation between DCS and

—

ECS is computed by M52 = SetupCSWithXAxis(eq.n.p, eq.n'.p — eq.n.p, V).

Using DCS, the detour node positions are easily calculated via rotation of a vector along
the DCS x-axis with length d and transformation into ECS, formally expressed by:

cosi¢p —sinigp 0 0 d

o sin ¢ Cos i 00 0
na"O8 = MpGy | 0 cosio 9 0o (4.21)

0 0 0 1 1

The creation process of the detour node routes is the main innovation of the second can-
didate generation algorithm. The other parts of the implementation, namely the iteration
over all nodes reachable from n,,;,, and the selection of the extension with minimal cost,
remain as shown in algorithm 8. Thus, this algorithm can be extended at the indicated
location with the code shown in algorithm 9 to handle the creation and evaluation of
detour routes in the same code frame.

Similar to the detection of potential edge duplicates for the direct connection candidates,
the detour route algorithm checks whether a detour node is to be placed too close to
an already existing node. If such a situation occurs (examples are marked as red nodes
in figure 4.21), it is still possible that the current route hypothesis can be salvaged. In
order to decide that, it is checked whether e; and e, can be connected to the overlapped
node 7y, instead of the current detour node ny without creating duplicate edges. If this
modification would cause duplicate edges, the overlapped node cannot be used to replace
ng and the current hypothesis is skipped. Otherwise, the map extension can proceed to
evaluate the modified route candidate.

This check is motivated by the following deliberations. If e; would duplicate an already
existing edge that is traversable, n,,., is reachable from the current start node and will
itself be selected as start node for the map extension eventually. Thus, the modified
route candidate will be generated anyway at some other time and can be skipped now
without losing anything. If the duplicated edge is untraversable, the candidate would
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Algorithm 9: Extending algorithm 8 to handle routes with detour nodes

foreach n € S do // main loop
// evaluate direct connections ...
for i — 0 to 27/¢ do
ng.p < compute detour node position with rotation angle i¢
if =3a € N.d(a.p,nq.p) < min_dist then // don’t overlap existing nodes
N — N U (nq.p, speculative)
E — E U (n, ng) U (ng, Ngoal)
Path P « Path (norig, Ngoal)
if Cost (P) < best_cost then
best_edge «— ey
best_cost < Cost (P)

end
reset £ and NV
else
|  handle node overlap special case
end
end
end

reopen a connection that has already been found unsuitable. This would cause the robot
to repeat an older navigation failure, which is clearly undesirable. The same reasoning
can be applied for edges duplicated by e,. In summary, any edge duplication is a reason
to skip the current route candidate in case the detour node would overlap any other node.

4.2.2 Cost Transfer between Nearby Maps

The map extension algorithm presented in the last section is able to link unconnected
topological nodes using only a minimal amount of new map elements. In free terrain, the
introduction of a single, direct connection usually suffices to allow travel to a previously
unreachable node. In more confined spaces, the extension algorithm can exploit the avail-
able terrain information encoded in local traversability maps and build detour routes to
circumvent detected obstacles. By iterating this process, even large obstacle constellations
can be mastered eventually.

However, the current form of the presented method still suffers from a deficit that re-
duces its usefulness. The problem is encountered when the radius d used for detour node
generation is comparably small and the nodes n, are placed within an area of the start
node’s local map which is still filled with traversability information. In this case, the
cost estimation algorithm effectively ignores the part of the local map that lies beyond
the detour node radius. The cause of this problem is the fact that local maps are only
used to estimate costs for edges that originate at the node to which the map is attached.
Consequently, the start node’s map is only used to predict the costs for the edge e;. The
cost prediction for e, cannot benefit from the information stored in the remaining map
parts. Thus, the cost prediction of detour route candidates becomes more inaccurate than
forced to by the available data and the selected extension route can easily ‘poke’ through
already known (but ignored) obstacles.
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Figure 4.22: Suboptimal map extension for small detour node radii

Figure 4.22 illustrates this problem. The detour node ng4 is placed directly in front of the
hedge, which has been accurately detected and noted in the traversability map of ngyg.
Unfortunately, the restricted applicability of the local map causes the shown connection
to become the cheapest possible map extension to reach the goal node ng.. For cost
estimation, this route consists of only a low cost edge ey traversing free space and the
shortest possible edge e, which is optimistically estimated using the local or global cost
model, without including any obstacle penalties.

In order to improve the situation, it is crucial to use all available terrain information for
the selection of a suitable map extension route. The easiest approach given the current
map extension strategy is to choose a sufficiently large detour node radius. However,
this workaround is not overly elegant and also requires a priori knowledge about the
maximum range up to which the local maps can contain traversability information. A
second and more powerful solution is to give up the independence between local maps,
so that information transfer becomes possible. In the general case, an unrestricted data
exchange between local maps is not desirable, because such a step would ultimately lead
to a globally referenced, metrical world description. As already discussed, this requires
a relatively exact robot localization to work reliably, which cannot be guaranteed easily
for outdoor environments. However, for the special case of map extension, the temporary
transfer of terrain information from the local map of the current start node to the detour
node’s map suffices to let the route selection algorithm choose the best alternative. After
reaching the extension decision, the transferred map information can be discarded to
restore the independence of the local maps. In this way, the hybrid maps remain as
robust to localization errors as they were before.

As a result of the previous discussion, the transfer of cost modifiers from one local map to
the map of another node has been implemented in order to augment the map extension
algorithm. However, its application is restricted to detour nodes and the transferred
information is discarded after selection of the best route candidate. The implementation
is based on spatial sampling of the source map at the seclet positions of the destination
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(a) Sampling of nypiy’s map (b) Resampled map for ng

Figure 4.23: Spatial resampling of a local traversability map

map and is visualized in figure 4.23. For each seclet of the destination map attached
to the detour node ny4, a set of sampling points is generated which uniformly covers the
seclet’s area. The sampling positions are then translated into the NCS of n,,,’s source
map and used to look up the cost modifiers (r,w) and reliability scores (6,,6,) of the
corresponding seclet within that map. All samples of (r,w) and (6,,6,,) taken for the
current destination seclet are then averaged to yield an estimate for that seclet. Finally, a
decay factor k = 0.75 is multiplied with the reliability scores to indicate the loss of spatial
accuracy incurred by the resampling step.

After performing the sampling procedure for all seclets of the destination map, the map
contains an image of the original map, translated into the frame of reference of the new
map. In the current example, the transferred information for ng contains the impassable
area of the detected hedge. Consequently, the cost estimation for the connection shown
in figure 4.22 can now correctly include the obstacle penalty for the edge e,. As shown in
section 4.3, this ultimately leads to the preference of another, longer route through free
terrain.

4.2.3 Integration

The simplest way to integrate the presented map extension technique into the existing
navigation system is to trigger its execution every time the user requests the travel from a
map entry node to a map exit node (cf. section 3.6) for which no valid path can be found.
In this case, it is straightforward to choose the origin node of map extension as the map
entry node, and the goal node as the map exit node. After map extension, the path planner
can select the newly created path and traverse it. Further causes which require calling
the map extension algorithm are traversal failures that occur during path traversals. If
the RepresentFailure method breaks the only connection to the current map exit node, the
map extension algorithm can be used to create a new hypothetical connection and let the
robot continue operation. In this case, the extension origin is set to the node inserted at
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the current robot position during the failure handling. The extension goal remains equal
to the map exit node as before.

The map extension algorithm can also be used in a less obvious way to provide improved
guidance for the behavior-based pilot during the traversal of speculative map edges. If
this technique is used, the path planner checks the length of a speculative edge e that
is to be traversed against a predetermined maximum length [,,,,, > d. If the edge is too
long, it is removed from the map and the map extension algorithm is called using e.n as
origin and e.n’ as the goal node. In order to avoid reinsertion of the removed edge, the
usage of direct connections as route candidates is disabled in this case. Now, based on the
local traversability map of e.n, a new detour connection is constructed, which preferably
runs through free space. This eases the job of the piloting layer and makes the emergence
of a well predictable line-of-sight trajectory more likely. It is important to note that this
Speculative Edge Split method will be usually applied several times for a given initial
edge, as each split only reduces the length of the second inserted edge e, by the detour
node radius d. Thus, e, is potentially still longer than [,,,,, and will be split again once nq4
has been reached. In effect, this leads to the replacement of a long edge with a sequence
of shorter segments that follow a path of locally optimal traversability. In essence, this
technique can be used to implement a local path following strategy on the basis of the
terrain traversability information available to the navigator.

4.3 Experiments and Results

Figure 4.24 shows the final speculative route that has been selected as the best possible
map extension to reach ngy from n,.;, given the original situation of figure 4.19 and a
comparably short detour node radius of d = 8 m. Agreeing with intuition, the chosen

Figure 4.24: Extension route for simulation scenario

route is the shortest possible connection to ngeq that still circumvents all detected parts
of the hedge. The extension can be deemed an appropriate choice, as it appears extremely
likely that the pilot will be able to successfully traverse the new connection. The skirting
of the lowest bush by the edge originating from the detour node (a result of missing infor-
mation in the local traversability map) is easily corrected by the local obstacle avoidance
mechanisms.
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The usefulness of the presented algorithms has also been demonstrated in a real world
situation during the European Land Robot Trial (ELROB) 2008 robot competition in
Hammelburg, Germany (http://www.m-elrob.eu/). Both the map extension and the
speculative edge split techniques have been key factors for the success of the RAVON
robot during the qualification run for the reconnaissance scenario of ELROB 2008. The
goal of this qualification run was to travel &~ 1 km through a priori unknown terrain,
with both start and end point of the track made public just before the start. Because
the use of freely available tools to generate intermediate waypoints was permitted within
the competition’s time limit, the GOOGLE EARTH  software was used to quickly set up
an initial path from the start to the end of the qualification track. The robot RAVON,
equipped with the combined behavior-based / topological navigation system described
in this thesis, was then used to traverse this path in a fully autonomous fashion. The
robot successfully arrived at the second to last waypoint within the premises of a mockup
military camp that contained the final destination of the trial before the time limit was
reached. With this performance, the robot qualified itself as one of 4 competitors (out of
11 teams) for the final run of the reconnaissance scenario that was held during night. It
also was the only fully autonomous vehicle that passed the qualification.

Figure 4.25 shows a GOOGLE EARTH  screenshot of the terrain covered during the
competition together with an overlay of the final map constructed by the robot’s navigation
system. The small circles indicate topological nodes and the connections between them
represent edges. The color scheme is equal to the standard used thorough this thesis:
green lines indicate traversable edges and reachable nodes, while blue signifies speculative
elements and red untraversable edges.

Initially, the robot was commanded to travel from the node PO on the extreme right of
the image to the goal node P16 visible on the left side, along the route specified by the
intermediate P nodes. The pilot successfully followed this route until the connection of P3
and P4 had to be traversed. Here, a mixture of debris and high vegetation, both not visible
in the aerial image, blocked the path. Consequently, the edge traversal failed. In response
to that, the RepresentFailure algorithm marked the connection edge as untraversable and
inserted a new node EO at the current robot position. Now, because this broke the only
connection to the goal node P16, the map extension algorithm was called for the first
time. It inserted a new direct connection from EO directly to P16, which starts off in the
direction of a well traversable dirt road. Although this road is the best track to the goal,
it had not been used for the original route setup because the other, more difficult road
would have provided a higher score for the competition. Upon initiating the traversal
of the new connection, the speculative edge split strategy was invoked repetitively and
split the extremely long direct connection iteratively into shorter segments with a length
of 20 meters (the detour node radius used in this scenario) each. Using the information
obtained from the local obstacle memory, the new detour nodes were placed accurately
along the well traversable dirt road, slowly progressing in the direction of the goal. The
edge splitting terminated once one of the picked detour nodes coincided with the P13
node, which subsequently replaced that node. This way, the path planner ‘jumped back
on track” and could follow the originally set waypoints to continue its travel and enter the
military compound. At this time, the qualification run was ended by the jury because the
time limit was reached. Nevertheless, this successful demonstration of global navigation
skills led to the qualification of the team for the final scenario of the competition. This
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Figure 4.25: Autonomous map extension during European Land Robot Trial 2008
The image was produced using GOOGLE EARTH

was accomplished by just 3 other teams out of 11 contestants. RAVON also achieved
the highest possible scores for navigation autonomy in both the qualification and the final
run.

In summary, the qualification run was an impressive demonstration of the robustness and
flexibility of the developed navigation and map extension system. The robot successfully
recovered from a traversal failure and autonomously constructed a path along a well
traversable road without relying on any previous information about that road or even
an explicit road detection or following strategy. After successfully generating a long and
sensible path segment that led the robot safely toward the goal, the path merged again
with the original track by coincidence. The path planner then switched back seamlessly
and used the provided track information which had not been replaced by the autonomously
generated shortcut.

4.4 Conclusion

In this chapter, four methods were presented which allow the prediction of traversal costs
for up-to-now untraversed edges. Three of these methods reuse information stored in the
cost annotations of the topological map edges, but incorporate data on different levels of
locality. The coarsest prediction technique relies on a global cost model constructed from
all available cost annotations using an outlier-robust linear regression of risk and effort
cost factors. This model correlates the estimated travel length of the hypothetical edge
with its probable cost by extrapolating global, overall terrain cost characteristics. A local
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(a) At the starting point (near P1) (b) Along the course (near P2)
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Figure 4.26: Images from the qualification route of ELROB 2008
Image source: Deutsche Bundeswehr (German Army). Reproduced with kind permission of the
copyright holder.

cost model is built by the second prediction method, which restricts the spatial extent of
edges eligible for cost transfer. This allows to better model local fluctuations of terrain
properties, improving risk and especially effort predictions. The third approach predicts
costs based solely an edge’s direct inverse twin, which is the spatially closest source of
information available.

In order to account for terrain properties which are not captured by the extrapolation
of topological map information, a fourth cost prediction algorithm was proposed which
uses the local traversability maps of the hybrid world model as information source. These
maps are filled by extracting traversable free space and untraversable obstacles from the
obstacle memory of the local pilot. By combining the learned costs in the topological
edges and the modifiers stored in the local metrical map, the accuracy of cost prediction
can be greatly improved. This is especially relevant for the risk cost factor, which depends
on the amount of obstacle evasions during edge traversal.

Experimental validation of the cost prediction algorithms revealed that increasingly ac-
curate extrapolation techniques can be selected as the available cost information accumu-
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lates. The overall performance of the prediction strategy was verified and each method
was quantitatively analyzed based on an extensive large-scale simulation test.

Based on the developed cost extrapolation methods, an exploration strategy was proposed
which generates new connection hypotheses from two sets of possibilities. The first set of
extension hypotheses adds direct connections between a reachable node and the previously
unreachable goal node. The second extension strategy inserts additional detour nodes,
which are placed according to the sector sizes of the local traversability maps. This allows
to optimally exploit the traversability information contained inside. After evaluation
of all valid hypotheses, only the candidate with the lowest predicted costs is actually
incorporated into the map. This keeps the map as small as possible, in accordance to the
formulated objective to retain a compact and scalable world model.

The devised map extension approach was tested in a real-world, competitive scenario posed
during the ELROB 2008 trial. In this trial, the global navigation system was capable to
recover from an impassable obstacle that blocked the predefined route and generated
an alternative route which led the robot safely along a pathway over 1km, until the
alternative route merged again with the predefined one. This successful demonstration
of global navigation skills led to the qualification of the team for the final scenario of
the competition. This was accomplished by just 3 other teams out of 11 contestants.
RAVON actually achieved the highest possible scores for navigation autonomy in both
the qualification and the final run.
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5. Shape-Based Terrain
Traversability Estimation

The last chapter presented several techniques to predict the costs of speculative edges
and extend a topological map in order to reach new targets. It has become apparent
that the use of local traversability maps is vital both to optimize the risk estimation for
speculative edges and to select suitable routes for the detour node based map extension.
However, the traversability maps are up to now filled solely with information taken from
the local obstacle memory of the piloting layer. As the pilot’s main task is local trajectory
generation and obstacle avoidance, this memory has a rather limited spatial range. Thus,
the navigator can only use short-range information to choose a route that leads the robot
through obstacle free terrain. As a consequence of this restricted knowledge horizon,
exploration decisions are likely to be myoptic and not optimal when considered in a larger
scope.

In order to improve the performance of the navigation system, long range information
about the traversability of the surrounding terrain must be acquired. Once suitable data
is obtained, it can be inserted into the (now less) local traversability maps in the same
way as the local obstacle memory data which is already used. Thus, the main difficulties
that still need to be solved are a) the acquisition of appropriate sensor data covering a
large area of the environment and b) the analysis of this data in order to extract traversal
cost modifiers for the local map.

In the following, a new approach for terrain traversability estimation is presented which
has been developed for this thesis by the author in cooperation with H. Bitsch [Bitsch 08].
In summary, this approach obtains high resolution color images of the terrain within a
range of up to &~ 30 m around the robot using a turnable stereo camera system. Based
on the distance measurement derived using stereo reconstruction, a geometric model of
the terrain surface is generated. Finally, a traversability analysis of the surface model is
performed and a local traversability map is filled with the results. The approach has been
published to the scientific community in [Braun 08b].

The rest of this chapter is structured as follows. After a short survey of already existing
methods, the developed techniques for the tasks of data acquisition and traversability
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estimation are described in detail. Afterwards, experiments are presented to document
the benefit for the cost prediction and exploration steps that can be obtained using the
now available long range information.

5.1 Related Work

Traversability estimation is a key issue for path planning in outdoor terrain. Therefore, a
lot of different approaches have already been published. To remain focused, the following
survey concentrates on data acquisition and terrain evaluation techniques suitable for
outdoor vehicles in an off-road or desert like terrain.

5.1.1 Data Acquisition

Established techniques for outdoor traversability estimation typically use either 3D LI-
DAR range sensors [Vandapel 04] or stereo systems [Simond 06] [Huertas 05] [Howard 06]
[Kim 07]. While LIDAR systems can quickly produce accurate 3D point clouds distributed
along the terrain surface, they do not provide visual information useful for terrain classi-
fication such as terrain color or texture.

In contrast, stereo cameras capturing high resolution color images can support appearance-
based terrain type inference. However, these systems have to derive the distance infor-
mation for 3D point cloud generation algorithmically, which increases computational load
and limits range accuracy. Even worse, stereo reconstruction depends heavily on suitable
input data. On problematic image areas (e.g. having low contrast), stereo matching may
fail.

There are different ways to obtain depth information from stereo images. Aside from the
‘common’ technique of generating a dense disparity map using algorithms such as described
in [Birchfield 99], some research groups use methods based on optical flow calculation
between consecutive frames ([Kagami 05], which used the KLF tracker by [Tomasi 91]) or
specialized techniques like [Gemme 05].

In order to combine their benefits, several researchers have proposed to use both sensor
types simultaneously and perform data fusion (e.g. [Braid 06] [Cremean 06]). However,
consistency over long ranges requires an extremely accurate mutual sensor registration and
a mechanically rigid construction to prevent misalignments caused by vibrations during
robot operation. Thus, sensor fusion has not been widely adapted for sensor systems
with moving parts such as pan/tilt units. Nevertheless, a general overview of registration
techniques can be found in [Brown 92].

In [Rasmussen 02], the combination of a laser range-finder and color/texture images of
an outdoor scene is used for road detection. To avoid the registration problem, the laser
scanner was registered to the stereo rig by using the algorithms introduced in [Elstrom 98].
The combined data is used as training models for a neuronal network in order to detect
road like areas.

In [Cremean 06], a different approach was taken. For every sensor, the acquired data was
transformed into grid of fixed size and orientation, the desired calculations were performed
and the results were pessimistically fused by taking the minimal resulting value for each
cell.
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Figure 5.1: Road detection using Laser (L),
Texture (T) and fused data from Laser, Texture and Color(C) (Source: [Rasmussen 02])

5.1.2 Traversability Estimation

Two main concepts can be found to extract traversability information from the obtained
raw sensor information. One idea is to reconstruct the environment in the form of a
geometrical (3D) model and derive traversability information from the model in a second
step. The other one is to use classification algorithms to group elements in the scene
directly and reason upon the classification results.

Surface Reconstruction

The 3D reconstruction of the environment is often based on a cloud of surface points
generated by the applied sensors. The idea of almost all methods presented here is to
segment the point cloud into smaller parts and analyze those. In some cases, based on
the analysis, a region growing of similar areas is performed as a form of split and merge
algorithm. Various types of segmentations such as voxels or patches are available. A rather

novel approach is the superpixel representation which is compared to normal patches in
[Kim 07].

Fig-
ure 5.2: Octree representation from different angles of a point cloud (Source: [Nuechter 07])

For mapping of an area or SLAM (simultaneous localization and mapping) purposes,
a truly three-dimensional representation of the scene is desirable. An example using
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a LIDAR system can be found in [Nuechter 07]. There, an octree based segmentation
process of the point cloud is introduced (see figure 5.2). This octree representation of the
scene is updated with new scanning data from different locations using a kd-tree enhanced
version of the ICP registration algorithm as introduced in [Besl 92].

For outdoor navigation and driving, a full 3D map of the area contains more data than
actually needed and is expensive to generate. Several approaches therefore use digital
elevation maps (DEM) or height maps as a sufficient representation of the area in a 2.5D
space. One implementation of this technique is discussed in [Vergauwen 01], where a DEM
is used in the navigator component of a Mars rover equipped with a stereo camera setup.
The traversability estimation of an area is based on a metric using the gradient of the
desired area in the DEM. In this approach, the DEM is directly calculated out of the
stereo data and the disparity image without the diversion of generating a point cloud.
Instead, it uses a technique based on virtual vertical lines and their shadows in the scene.

In [Weingarten 03] a different approach using voxels and plane fitting is introduced. Based
on LIDAR data, the cloud of point is segmented using voxels. For every voxel, an average
plane is estimated by using RANSAC and least square plane fitting. By not making any
assumptions regarding the topology of the input data, it can be applied to various 3D
sensor data.

-
-

Figure 5.3: Surface reconstruction using a triangular mesh (Source: [Gemme 05])

Triangular meshes can also be used for surface reconstruction as shown in [Gemme 05],
where such a mesh is fitted on a cloud of points received from a LIDAR system (see figure
5.3).  On the resulting mesh, traversability is estimated by geometrical considerations
for each triangle. Designed for a planetary rover, this approach is mainly suitable for
obstacle-free terrain, but can detect holes in the ground and steep slopes.

Another approach to sensor fusion and evaluation of digital elevation maps (DEMs) re-
garding traversability can be found in [Cremean 06]. Their outdoor vehicle Alice features
several mid range laser scanners (up to 25 m) as well as a long range stereo vision system
with a baseline of 1 m and a visibility of up to 50 m. In a first step, a separate DEM
for every sensor is generated. The map is of fixed size, grid dimension and orientation
relatively to the vehicle. Incoming 3D point data is transformed according to the current
GPS and inertial system measurements and overlaid with the grid. A height value is
calculated for every cell in the grid. In a second step, a traversal speed limit is calculated
for every cell (see figure 5.4). This is done by considering the variance in elevation. A
larger variance means a larger spread in elevation measurements and a higher probability
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the cell contains an obstacle, reducing the resulting speed to 0. A second source for speed
limit estimation is derived from calculating a Gaussian weighted average of the differences
in height between the current cell and its neighbors and transforming this value into a
speed limit. The smaller one of the two is used. Every time new sensor data appears, the
DEM is updated and the affected cells are recalculated.

__m
—t

Figure 5.4: Speed maps from three different LADAR sources and
the combined speed map enhanced with race corridor information (Source: [Cremean 06])

To fuse the different sensor DEMs into a final DEM, the speed limits for every cell are
merged using a modified weighted average algorithm, considering the range and charac-
teristics of each sensor. This is expected to reduce the registration problem. In a last step,
the final DEM is overlaid with data from a road following algorithm in order to remove
speed information from cells outside the estimated race corridor.

Classification Based Techniques

The algorithms introduced in the last section generate a detailed geometrical representa-
tion of the environment to reason upon, but do not include knowledge about the actual
type and material properties of the observed structures. In contrast to this, classifica-
tion based methods try to actually classify areas into roads, bushes, trees or fences and
use trained or preconfigured knowledge to estimate traversability from this classification.
Since the focus of the current chapter is on geometry based approaches, methods relying
on different kinds of features such as color and texture will be skipped at this point. The
next chapter contains a more in-depth review of these approaches.

An example for classification based on predefined criteria can be found in [Hebert 03].
Based on LIDAR data, the acquired 3D point cloud is segmented by a voxel grid. For every
point a shape matrix characterizing the local distribution of all points in the same voxel is
calculated. In a second step, every point is classified into different classes named scatter,
surface and linear (poles) using an automatically trained Bayesian classifier (see figure 5.5).
A proper registration of different scans is crucial for this approach. Additional research
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effort has been put into this idea and it has been advanced as shown in [Lalonde 06] in
terms of classification performance and accuracy.

(a) (bj

Figure 5.5: Classification of LADAR data including wires (Source: [Lalonde 06])

In [Braid 06], the TerraMax autonomous vehicle is introduced. It is equipped with multiple
LIDAR scanners and a trinocular vision system with a baseline between the outer cameras
of 1.5 m. The vision system is used for obstacle- as well as path detection. For both
aspects, the vehicle calculates the average terrain slope in front of the vehicle first. Any
area deviating too much from these estimates are marked as an obstacle. Its actual
position is calculated by stereo triangulation and refined with LIDAR data. To estimate
the drivable path in front of the vehicle, the smoothness of the slope in front of the
machine is fused with similarities in texture, color and shape to constitute a free way
recommendation to the path planning module.

Figure 5.6: Tree detection in a winter forest (Source: [Huertas 05])

A different approach to estimate the traversability of a forest-like area is presented by
[Huertas 05]. It aims at the detection and assessment of tree trunks. Huertas tries to
detect fragments representing trunks by matching edges of opposite contrast. The area in
between can be approximated by an ellipse, which was found to be sufficient for encoding
shape, position and orientation of the trunk. The distance of the detected trunks is
computed by calculating the average stereo range data of the area the fragment covers.
The method works for normal and infrared images, but is focused on vertical shapes and
the described version only works on trees which can be clearly distinguished from the
background. An example is given in figure 5.6.
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5.1.3 Selection of an Appropriate Sensor System

The survey of related work above showed that traversability estimation is most frequently
based on LIDAR sensors, stereo camera systems or a combination of both. Out of these
options, a turnable stereo color camera system has been selected as exclusive in-
formation source for the approach developed in the scope of this thesis. This choice is
motivated by several factors:

e The intended range of up to 40 m is close to the technical limit of commercially
available laser scanners (such as the SICK sensors) and cannot be extended algo-
rithmically if desired. In contrast, the range of the stereo vision system can easily
be extended by increasing the distance between the cameras. The fact that this also
increases the minimum distance for object detection can be tolerated, as close range
objects are already covered by the pilot’s local obstacle memory.

e The angular resolution of a camera can be much higher (= 0.025° per pixel for 40°
FOV at 1600 pixels) than of comparably expensive laser range finders (= 0.5°). Even
after combining multiple pixels into one depth value during stereo reconstruction,
the angular resolution usually remains superior.

e The color images contain additional information like color or texture which can be
used for terrain type classification based on visual appearance (e.g. using texture,
feature or color analysis). Because vegetation discrimination is a very important
topic for the envisioned application domain, this is a major benefit of using cameras.

e The use of a single camera system avoids registration issues that plague sensor fusion
approaches, while the panning degree of freedom can be used to increase the field of
view of the system. !

e The speed penalty that results from using a mechanically rotating system and the
need to recover depth information using stereo algorithms is acceptable, because
the navigator does not need to perform the long range traversability analysis fre-
quently. It is sufficient to start this analysis whenever difficult map extension or
route planning decisions have to be made.

Considering the presented approaches for traversability estimation, both the reconstruc-
tion of a geometric model and the appearance-based terrain classification have distinct
benefits and drawbacks. The modeling techniques can determine the layout of the terrain
surface without relying on an initial training phase. Thus, they can be readily used in
any environment to produce a traversability prediction based on predefined, shape-based
criteria encompassing terrain slope or the presence of abrupt steps. On the negative side,
these approaches assume that the reconstructed surface is also load-bearing, which can be
a serious misjudgment in terrain covered with vegetation.

Consequently, many groups use a terrain type classification approach for robots expected
to operate in vegetated surroundings. These techniques can distinguish between load-
bearing, solid surfaces and soft vegetation. While this allows to obtain qualitatively

1Some previous experience of the author with the problematic mutual registration of camera and laser
scanner systems has been documented in [Braun 05].
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superior traversability estimates than model based techniques, image-based classification
algorithms typically require training data in order to work reliably. This data must either
be supplied manually prior to robot operation, or generated online by the robot itself using
a self-supervised learning technique. Manually provided data limits the robot’s operation
environment to a priori known terrain types and thus severely restricts the flexibility of
the system. Alternatively, the self-supervised generation of training data requires that
image areas can be matched spatially with sensor ‘experiences’. However, the three-
dimensional information about the visible terrain that is needed for this already constitutes
a geometric terrain model. Thus, it appears that a classification based approach which
uses self-supervised learning must be considered as an extension of a geometrical modeling
technique, rather than an alternative to it.

In summary, the discussion indicates that the construction of a 3D surface model and
subsequent traversability estimation based on the terrain shape seems to be the most
promising approach to extend the current navigation system. The obtained geometrical
information can be analyzed directly to improve the performance of the path planning
system. Later, the long range traversability system can be extended on the basis of the
collected three-dimensional information with a classification based approach that imple-
ments both terrain type classification and spatially consistent online learning capabilities.
This topic will be addressed in the next chapter.

5.2 A New Approach for Shape-Based Traversability
Estimation

Motivated by the deliberations presented above, a new approach for terrain traversability
estimation using stereo cameras and shape-based traversability estimation is proposed.
The algorithm proceeds in the sequence of steps shown in figure 5.7.

\

Stereo Image Acquisition

Stereo Images

| Point Cloud Generation

)3D Point Cloud

Terrain Modeling

/—-’lanar Terrain Model

Traversability Analysis

G

Local Traver-
sability Map

Figure 5.7: Workflow of proposed method

Using the camera system, well exposed stereo images are recorded from the terrain which is
to be evaluated. Then, a stereo reconstruction is performed to produce a three-dimensional
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point cloud outlining the terrain surface. Subsequently, a piecewise planar terrain model
is fitted to the point cloud in order to allow reasoning about the traversability of the cor-
responding planar patch. Finally, the results of the traversability analysis are transferred
into a local traversability map in order to make the data available for the cost prediction
algorithm.

Each of these steps will be discussed in detail in the following sections.

5.2.1 Stereo Image Acquisition

The accurate reconstruction of the geometrical terrain shape over the target range of
~ 40m requires a camera system with very high resolution. Therefore, two Point Grey
Research Scorpion SCOR-20SOC-CS CCD cameras as depicted in figure 5.8b have been
selected as primary sensors. The cameras are connected via an IEEE1394a firewire serial
bus [[EEE 00] to the host PC and provide images with a resolution of 1600 x 1200 pixels.
Similar to the human eyes, the usage of two cameras with a mutual horizontal displacement
allows to recover the three dimensional position of features visible in both camera images
using a stereo reconstruction algorithm, described in section 5.2.2.4. The selected
models automatically synchronize themselves on the hardware level to guarantee that both
images are taken within at most a 125 us time interval. This feature substantially eases
the task of feature matching required by the stereo algorithms. As lenses, two manual
focus mega-pixel models from Computar have been chosen. They provide a horizontal
field of view of 56°. This is perceived as an acceptable compromise between covering a
large area in a single image and achieving a high spatial resolution.

In order to extend the angular coverage of the cameras, the rigid stereo system is attached
to a pan/tilt unit shown in figure 5.8a*. The unit is a purpose build device actuated by
one stepper motor each for the pan and tilt axis. The motors are controlled by a DSP
circuit board, which communicates with the host computer via CAN bus. This interface
allows to issue initialization commands, or provide absolute values for the pan and tilt
angles.

In the current configuration, a pan angle of approximately 250° (—125° to 125°) and an
tilt angle of approximately 130° (—65° to 65°) can be covered. A direction of 0° turns the
camera head to the front direction with a horizontal alignment of the tilt unit. At the
end of the turning range, stop switches prevent the head from overwinding.

Coping with Variable Lighting Conditions

A major challenge when capturing images outdoors are rapidly changing lighting con-
ditions and the high dynamic range of the visible environment. The two main camera
control settings that can be used to deal with both are the shutter and gain settings.

The shutter value defines the time during which the cameras internal Charge-Coupled-
Device (CCD) sensor accumulates electrical charge (which is proportional to the amount of
incoming light). A higher value allows the CCD sensor to accumulate more charge during
light exposure, which can compensate e.g. dim lighting conditions. On the other hand,

2As seen in the figure, the cameras are enclosed in a copper-covered chassis. This shielding became
necessary after tests revealed that the cameras emit electromagnetic radiation which strongly interferes
with the main GPS unit placed behind the cameras.
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(b) Camera sensor

Figure 5.8: Image acquisition hardware

a lower value prevents the image from getting too bright or even saturated when taking
images in bright conditions. In digital cameras, the shutter is commonly implemented as
an electronic circuit which removes the charge from the CCD just before the exposure
starts. After the time specified by the shutter value, the sensor is read out.

The gain property controls the internal signal amplifier, which boosts the voltage of the
accumulated charge to usable levels before it is digitized. High gain values can overcome
dark lighting conditions, but introduce amplification noise into the final image, resulting
in random speckles of slightly different color or brightness.

The camera has algorithms to control the gain and shutter values automatically. This
auto-exposure feature can be used to achieve a certain brightness of the entire image.
In order to focus research effort more on novel traversability estimation techniques, the
camera’s build-in automatics for shutter and gain was initially used in order to acquire
images with acceptable illumination.

Unfortunately, the standard automatic control turned out to be unsuitable for outdoor sit-
uations which exhibit a large dynamic range. Figure 5.9 illustrates the problem. Although
the photographed scene is partly cloudy, the sky is much brighter than the ground plane.
This causes the camera automatic, which is designed to optimize the overall brightness
of the entire image, to decrease shutter in order to reduce the over-exposure of the sky.
However, as a consequence, the lower part of the image is rendered too dark and details
in the texture-rich ground area are lost. The corresponding brightness histogram is shown
in figure 5.9b. As can be observed, the histogram is very unbalanced. Many pixels have
a very low brightness value, while another large group of over-exposed pixels is capped at
maximum brightness.

To overcome this problem, the camera automatic has been replaced by an algorithm
specifically designed to be robust against large brightness variations which occur frequently
in outdoor environments. Instead of optimizing the overall brightness value of the entire
image, the new algorithm’s goal is to keep the majority of the image well-ezposed (within
a reasonable brightness range).

In the outdoor setting that is the primary concern here, large brightness variations often
emerge between image parts that show sky and ground. Fortunately, the sky contains
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Figure 5.9: Automatic exposure control in outdoor environments

no traversability information which needs to be captured, so the new shutter and gain
control can safely sacrifice (over-expose) the sky in order to record the other parts of the
image well. In order to achieve this, the algorithm exploits the fact that the two parts are
usually arranged horizontally. Thus, the algorithm starts by segmenting the image into
horizontal bars as shown in figure 5.10.

Figure 5.10: Image brightness evaluation
The algorithm evaluates the image brightness using eight equidistant bars. Mean values (highest to
lowest bar): 159, 131, 69, 65, 78, 123, 130, 124.

Instead of using the mean value of the whole image for shutter adjustment, the mean
value of every single bar is calculated and rated separately as too dark (d), valid (v) or
too bright (b). During test runs, a valid brightness rating in the range of 70 — 150 (out of
the possible values between 0—255) has yielded satisfactory results. If the number of valid
bars exceeds a configurable threshold (typically 65% of all bars), the image is considered
usable and processed further. If the threshold is not reached, the image is regrabbed with
a different shutter value. It is sufficient to adapt the shutter value by simply adding or
subtracting a fraction of the old value, depending on whether the number of dark bars ny
exceeds the number of bright bars n, as shown in equation 5.1.

1.3 ng > Ny

0.7 Ng S My (51>

shutter,e, = shutter urrent - {

Under certain dim lighting conditions (sunset, indoors), increasing the shutter value alone
is not sufficient to produce well-exposed images. In this situation, the shutter value will
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eventually reach its upper limit. Then, the optimization algorithm starts to modify the
gain parameter using a similar adaption rule as presented in equation 5.1. However, as
this adds noise to the image, high shutter values are always preferred to high gain values
(— shutter before gain strategy). Therefore, if image brightness is to be reduced again,
gain is lowered first, and only after gain values reach the lower limit, the reduction of
shutter times is started.

Finally, in order to handle cases where there is no chance to acquire a well-exposed image,
such as in complete darkness or directly facing the sun, the number of regrabbed images
is counted. If eight images are not accepted in succession, the image with the highest
number of valid bars is used regardless of the threshold.

An example of a real outdoor scene with difficult illumination conditions is depicted in
figure 5.11. Using the presented shutter and gain control strategy, a well-exposed image
foreground showing bushes and grass is obtained despite the brightly visible sky in the
upper image parts.

Figure 5.11: A well exposed foreground despite direct sun exposure

5.2.2 Point Cloud Generation

After capturing a well-exposed pair of images, the depth information of the image content
needs to be recovered in order to build a three-dimensional model of the visible terrain. As
already mentioned, this can be achieved using stereo reconstruction, a technique which cal-
culates distances between the viewer and objects by evaluating the apparent displacement
of these objects in images taken from slightly different viewpoints. Stereo reconstruction
is thus based on parallazx, akin to the stereopsis process of the human visual system.

In order to perform stereo reconstruction based on two captured images, the so called
correspondence problem needs to be solved. Objects or visually distinct image parts
(features) that correspond to each other must be found in both images and correctly
matched. Then, the two feature positions can be fed into a mathematical model that
contains both the imaging properties of each single camera (their intrinsic parameters)
and the mutual orientation between them (the stereo system’s extrinsic parameters).
With this model, the three dimensional position of the features with respect to a camera
coordinate system can be computed [Hartley 03].



5.2. A New Approach for Shape-Based Traversability Estimation 129

Although it is possible to perform stereo reconstruction with two arbitrarily aligned cam-
eras, the feature matching algorithms that will be used later presume that image pairs are
captured using a canonical stereo system. Ideal canonical stereo systems feature identi-
cal cameras with parallel image planes, parallel optical axes and colinear scan lines. This
simplifies the mathematical model and allows to restrict the search space for correspond-
ing features to horizontal scan lines in each image (see [Hartley 03] for more information
on this topic). As a result, stereo reconstruction becomes much more efficient.

5.2.2.1 Camera Calibration and Image Rectification

In practice, perfect canonical stereo systems cannot be built. All lenses exhibit optical
deficiencies and even cameras of the same type always have slightly different internal
geometries. In addition, mechanical tolerances inevitably cause slight errors in the desired
parallel camera alignment.

However, those deficiencies can be compensated up to a certain degree by performing
camera calibration and image rectification. Camera calibration corrects non-linear image
distortions caused by the optical system. A very drastic case of radial distortion (some-
times called a ‘fish-eye’ effect) and its removal is shown in figure 5.12. The correction of
such a lens distortion can be performed according to the plumb bob model introduced
by Brown [Brown 71]. This model approximates the entire lens system of a camera as
a radially distorting lens combined with a thin prism, which causes a tangential distor-
tion component. In reality, such a distortion occurs when a compound lens contains an
imperfectly centered component.

(a) Distorted image (b) Undistorted image

Figure 5.12: An example for undistortion

The plumb bob model characterizes distortion using a set of two radial and two tangential
distortion coefficients. As described in [Brown 66], known coefficients can be used to com-
pute a non-linear pixel transformation which compensates the estimated lens distortions.

Once the non-linear optical distortions are removed, the extrinsic parameters of the stereo
rig can be estimated. This allows to perform image rectification, e.g. to compute a
linear transformation of the captured images that corrects non parallel alignments of the
cameras. The mathematical details of this process are skipped, exhaustive material on
this standard procedure has already been published e.g. in [Pollefeys 02] or [Hartley 03].
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In the scope of this thesis, the DLR Camera Calibration Toolboz has been used to estimate
the lens distortion coefficients and the intrinsic and extrinsic parameters of the stereo
system. This toolbox was published by the Institute for Robotics and Mechatronics at
the Deutsches Zentrum fiir Luft- und Raumfahrt e.V, Koln®. It is based on the work of
[Weng 92] and estimates the system parameters using a series of stereo images showing
different poses of a chessboard with known dimensions and many easily detectable corners.

As a result of the calibration, a rectification map is generated for each input image that
contains new coordinates for every pixel of the original image. This map can be used to
transform a pair of grabbed images in real time into rectified images that appear as if
they have been produced by a canonical stereo system. Most importantly, the projections
of any object are mapped onto similar horizontal lines, and thus have the same height in
both images. An example of a rectified image pair is given in figure 5.13. In the figure,
two differently shaped black borders can be seen around the images. These borders result
from the undistortion and remapping of the original images. Also, it can be observed that
corresponding elements are really aligned along the same horizontal line. The red lines
provide some assistance for verification.

Figure 5.13: A rectified image pair

The rectified images are suitable input images for the feature matching algorithms that
will be presented in the next section.

5.2.2.2 Feature Matching and Disparity Calculation

In rectified stereo images, a scene point projected at a position (x,y) in one image is
projected at a position (z',y) in the second image (unless it is occluded, which is neglected
for now). To recover the three-dimensional position of a scene point visible in both
images, the coordinate x’ must be determined by finding the best match of the projected
scene point’s image at (z,y) somewhere along the same horizontal scan line in the second
image (see figure 5.14). If a good match is found, (x,y) and 2’ are sufficient for stereo
reconstruction. Alternatively, (z,y) and the horizontal position difference d = x — 2’ can
be used. In this context, d is commonly called the disparity of the projected scene point.

There are two main classes of methods that allow to find matching elements in a pair of
stereo images and compute the corresponding disparity values for these matches.

3http://www.dlr.de/rm-neu/desktopdefault.aspx/tabid-3925/6084_read-9201/


http://www.dlr.de/rm-neu/desktopdefault.aspx/tabid-3925/6084_read-9201/

5.2. A New Approach for Shape-Based Traversability Estimation 131

(z,9)

Left Camera Image Right Camera Image

Figure 5.14: Feature matching and disparity calculation in a canonical stereo system
(Image inspired by Allan Ortiz)

Sparse disparity algorithms only compute disparities for easily recognizable image features
such as object corners. Because these features are so well localized, highly accurate
disparity values can be produced, often down to a sub-pixel accuracy of 0.2 pixels (using
linear interpolation). Also, the algorithms are comparably fast since they only treat a
subset of all image pixels. On the downside, these methods do not work at all in regions
with low contrast or few identifiable features, possibly leaving out larger image areas like
uniformly colored roads or walls.

In contrast to sparse stereo methods, algorithms for dense disparity computation try
to calculate a disparity value for every pixel in the image plane. Compared to sparse
techniques, these algorithms are typically less accurate and computationally more taxing
due to the large number of pixels that have to be matched. Also, even though disparity
values are produced everywhere, the matching quality can become rather low in image
regions with little contrast or indistinct patterns. However, some techniques allow to
incorporate reliable disparity values from adjacent regions into areas which are difficult to
estimate accurately themselves. This allows to obtain at least somewhat accurate disparity
data instead of none at all as provided by the sparse approaches. Table 5.1 summarizes
the listed properties of both algorithm classes.

Algorithm Class Sparse Dense

. Feature detection Window based
Typical Method and tracking pattern matching
Coverage Distinctive features All matchable pixels
Covered Pixels 0.5% - 5% ~ 100 %
Accuracy Very High Medium
Speed High Low
Treats problematic areas No Yes
Robust against Decalibration Possibly No

Table 5.1: Typical properties of sparse and dense disparity algorithms

The complementary strengths of sparse and dense disparity computation algorithms and
the fact that computational effort is not a critical issue in the context of this work led to the
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decision to use both classes of algorithms simultaneously. To construct the best possible
terrain model for traversability estimation, the developed modeling algorithm preferably
uses surface points detected by an accurate sparse method. If there are not sufficiently
many of such points available (such as in images regions with low contrast), additional
data from a dense disparity algorithm which is specifically designed to incorporate reliable
information from neighboring regions if necessary is included as a fallback. By combining
both methods, the probability to obtain a reasonable number of three-dimensional features
in all areas of the image are increased.

The sparse and dense disparity algorithms that have been chosen for the developed tra-
versability estimation approach are presented in the following sections.

Sparse Disparity Calculation

To compute sparse disparities, a two-step method is used. First, features with high con-
trast in two orthogonal directions (such as shown in figure 5.15) are detected in one image.
Then, a method for optical flow estimation is applied to match the detected features in

Figure 5.15: A very good feature to track

the second image. Once the feature correspondences have been established, several qual-
ity checks are performed to remove outliers. The remaining feature pairs are used for
disparity calculation.

The first step, feature detection, is done using a method introduced by [Shi 94|, appro-
priately called GoodFeaturesToTrack. The method detects high contrast image corners.
This is done by iterating over the pixels p of the left input image and calculating the
eigenvalues \; and A\ of the covariance matrix M

with I(x,y) being the intensity channel of the input image and S(p) a square neighborhood
around the pixel p. After that, a non-maxima suppression step is performed on the
computed eigenvalues, leaving only local maxima in a 3x3 neighborhood intact. Keeping
pixels with larger eigenvalues ensures a greater distance to the image noise-level. Because
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image corners with high contrast are characterized by two large eigenvalues, the remaining
pixels are filtered using a quality parameter ¢ < 1 and requiring that

min(A1, A2) > q - max(A, A2) (5.3)

As a last step, corners too close to each other are removed, keeping the stronger corner.

q is chosen so that 0.5% - 5% of the image pixels are selected as features. If these bounds
are exceeded, ¢ is adapted accordingly to increase or decrease the amount of accepted
features. However, ¢ is not allowed to fall below a minimum of 0.01; if this yields too few
features, the input image is simply unsuitable for sparse disparity calculations.

Figure 5.16 shows an example of detected features for a typical outdoor scene. It can be
observed that many features are placed in vegetated regions due to their high contrast,
while uniformly colored building walls are not well covered.

Figure 5.16: Typical result of sparse feature detection

In the next step, the features are matched with corresponding points in the other image.
This is done using an optical flow algorithm described by Lucas and Kanade in [Lucas 81].
For a given point (u,, uy)T in the left image plane I;, the algorithm finds the corresponding
point (uy + 0y, uy + 5y)T in the right image plane I, that minimizes the intensity difference
e of the local neighborhoods around the feature pair:

ux+wx uy+wy

(0rd) = > 3 ([l(a:', y) = I(z + 00y y+ 5y)) (5.4)

T=1Up — Wy Y= Uy — Wy
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This general tracking algorithm can deal with two-dimensional feature shifts and is there-
fore also capable of working on images that have not been rectified. It is not far-fetched to
hypothesize that improved matching performance could be achieved by selecting a differ-
ent algorithm that exploits the horizontal line constraint more fully and performs only an
one-dimensional search. However, when using rectified images, the two dimensional track-
ing capability can be exploited as a very powerful filter criterion to reject bad disparity
values. In fact, every feature pair that is not located on approximately the same scanlines
in both images is most likely erroneously matched and difficult to localize correctly in
general. Thus, the resulting disparity for that feature is probably inaccurate regardless of
the used matching algorithm. Consequently, the terrain model quality can be improved
by ignoring such a match.

The horizontal match constraint is checked by computing the match angle o = arctan (9, /d)
and requiring || < p with a typical error threshold o =~ 3°. By allowing a certain deviation
from the zero angle, the sparse disparity extraction becomes robust against small image
rectification errors and minor changes in the cameras’ geometrical setup. These changes
can be introduced e.g. through vibrations during operation or non-rigid components in-
side the lenses. In experiments, such effects have been found to decrease the quality of the
calibration over time and thus quickly limit the effectiveness of purely one-dimensional
matching strategies.

The minimal intensity difference e found for each feature is another good criterion to filter
mismatches. Thus, all matches with € > ¢,,,, are discarded.

During empirical testing, the tracking algorithm yielded approximately 75% successfully
tracked points. 1—5% of the detected features could not be found in the other image plane
and were diagnosed as missed detections by the algorithm itself. The rest of 20 — 24% is
filtered by the p or e constraints introduced above. This rather high value results from
erroneously tracked features and numerical inaccuracies for tracked features further away
from the cameras, having a small disparity and therefore little room for matching errors.
This percentage has also proven itself as a good indication for the quality of the camera
calibration. Rising percentages indicate increasing displacements in the stereo setup and
quantify the urgency of recalibration.

Dense Disparity Calculation

The desire to use the dense disparity algorithm in cases where the sparse approach is
unable to provide sufficient information places a high priority on selecting an approach
well capable to deal with low-contrast and difficult to match image regions. This capability
is especially pronounced in the dense disparity algorithm introduced by Stan Birchfield
in [Birchfield 99], which was therefore chosen for dense disparity calculation. As shown
in [Schifer 05], it is quite robust against different lighting conditions like cloudy sky,
bright sunlight or even weak reflections, and there are special optimizations for handling
untextured regions like roads. Also, post-processing algorithms exists which propagate
reliable disparities to regions of unreliable or unavailable disparity [Birchfield 99].

An example for a disparity map generated with the Birchfield algorithm is shown in figure
5.17. In such a disparity map, the measured pixel disparity is encoded as brightness,
rendering closer objects brighter.
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Figure 5.17: Undistorted left image and resulting disparity map

Taking a closer look, it can be observed that the main objects in the scene have been
analyzed correctly and even the trees in the background are visible. Although parts of
the grass surface in the foreground exhibits rather low contrast, it is mapped correctly as
a result of the special treatment for untextured regions. However, some errors are also
introduced. Especially on the left and the top sides of the map, there are regions with bad
or missing disparity information, resulting from pixels present only in one image plane or
not matched in the other one. Furthermore, there is some noise around prominent object
edges such as the person in the map, resulting from improper disparity propagation/post-
processing. However, these image areas are distinct enough to allow a good sparse disparity
analysis.

5.2.2.3 Feature Filtering

The features produced by the sparse and dense disparity algorithms contain a significant
amount of incorrectly matched outliers. Many of these outliers stem from a relatively

small number of typical problems related to the input images. Four main issues can be
identified:

e The images have irregular black borders caused by undistortion. Features detected
at or close to these borders have a very high risk of being erroneously matched and
should be removed.

e Image areas with extremely low contrast are difficult to analyze even for the more
tolerant dense algorithm, resulting in tracking mismatches.

e Larger, coarsely connected areas of low contrast can indicate sky, water or other
areas lacking usable information. Features detected in areas with many neighboring
low contrast areas have a higher risk of also being erroneous themselves.

e The used dense disparity algorithm requires a range of visible pixels before disparity
matching becomes possible. This causes a tattered left border of invalid (zero)
disparity values in the produced disparity map.

To filter outliers resulting from one of the problems outlined above, it is necessary to check
the image neighborhood of the features. Since it is prohibitively expensive to construct
and analyze the neighborhood of each feature one by one, 'generic’ neighborhoods are
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created by subdividing the image into a regular grid of tiles instead, as shown in figure
5.18. Each tile is quadratical with a typical size of t; = 40 pixels for a 1600 by 1200 pixel
image.
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Figure 5.18: Example image subdivided into tiles

Each tile is checked against a set of quality criterions derived from the list of problems
presented above. If one of these condition is not met, the tile is marked as ‘unsuitable’
and the features located within the tile’s image region are discarded.

Undistortion Border

First, tiles overlapping with the border introduced by the undistortion process are marked
as unsuitable. Because the shape of this border only changes during recalibration, a mask
which excludes the tiles affected by the undistortion border can be precomputed.

Low Contrast

Correct feature matching in image areas with very low contrast is often even beyond the
capability of the dense algorithm. Thus, extremely low contrast tiles are also excluded
from feature generation. To detect those tiles, the standard deviation o of the pixel
intensities within an image tile is estimated. It is defined as:

.’L‘o—l—ts y0+t5

Y Y Uy 1) (5.5)

T=Xo Y=1Yo
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o =
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with
1
12

Yo + s
> Iz, y) (5.6)

=To Y=1Yo

being the mean value of the tile’s brightness and (¢, yo) being the base position of the tile.
A low contrast tile can be identified by comparing ¢ with a threshold. During empirical
testing, a requirement of o > [3...7] provided good results as a quality constraint.

xo—i—ts
I =
X

After checking each tile for sufficient contrast, isolated tiles which are marked differently
than all of its neighbors are smoothened out using a single morphological opening and
closing operation with a 3x3 tile structural element (see [Foreman 07] for more details on
morphology operators). This step is aimed at regularizing larger areas of unusable tiles
and is led by the assumption that a valid tile which is completely enclosed by unsuitable
tiles is probably also error-prone and should better not be considered. A good example
are the edges of darker clouds in the sky, which exhibit sufficient contrast but do not
contribute any usable information due to their context.

Invalid Disparity

The last common source of outliers which needs to be treated are invalid disparity values
produced by the dense disparity algorithm as a result of missing feature correspondences
close to the left image border (well observable in figure 5.17, for example). In order to
remove these features, which typically exhibit almost zero disparity values d, all features
are required to have a disparity within given minimum and maximum range d,,;, and
dymaz- As will be discussed in section 5.2.2.4 (in which appropriate values for these bounds
will also be derived), this limits the 3D distance of valid features down to a range which
ensures a reasonable depth accuracy.

In order to filter the dense disparity values even more rigorously and also exclude matches
that lie close to features with invalid disparities, any tile that contains more than 1% of
features violating these bounds is marked unsuitable as well. This tile criterion is only
applied for the dense disparity algorithm.

In effect, the disparity constraint filters out all of the left border tiles that contain invalid
data, plus all tiles which contain features beyond the sensor range, e.g. the ‘background’
of each stereo image pair.

The performance of the presented tile-based filtering criterions can be observed well in
figure 5.19. Tiles that have been found unsuitable are marked with different colors, de-
pending on the criterion that was violated. Red tiles have been excluded due to the
boundary constraint, yellow tiles exhibited insufficient contrast, and blue tiles contained
too many features with invalid disparities, so that dense feature extraction was skipped.

To conclude this section, the different criterions introduced to filter erroneous and incorrect
feature matches are summarized in table 5.2.

5.2.2.4 Triangulation

After filtering most of the erroneously detected features, the remaining match locations in
both image planes and the corresponding disparity information can be used to compute the
three-dimensional feature positions through triangulation. Initially, the 3D coordinates
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Figure 5.19: Tiles unsuitable for stereo reconstruction

are calculated in the Camera Coordinate System (CCS), which originates in the center
between both cameras and whose z-axis is orthogonal to the connection line of the two
cameras, pointing away from the robot. The x-axis is chosen to point horizontally to the
right (from the robot’s perspective). Figure 5.20 shows a schematic birds eye view of the
canonical stereo camera system and the CCS.

Relevant parameters for triangulation are the horizontal displacement b of the two camera
projection centers C; and C,, commonly called the baseline of the stereo system. The
distance of the centers from the image planes (red) is called the focal length f, while
the intersection of a camera imaging axis with the respective image plane determines the
principal point of that camera (P, P,). Given the projections of a scene point S(z,y, z)

Applicability
Filter Criterion Sparse Dense
Sufficient match similarity (e < €mqz) Yes No
Low vertical match slope (Ja| < ) Yes No
In tile outside undistortion border Yes Yes
In tile with sufficient contrast (o > [3...7])  Yes Yes
Valid feature disparity (dmin < d < dmaz) Yes Yes
In tile with >99% valid disparities No Yes

Table 5.2: Summary of filter criterions for matched feature pairs
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Figure 5.20: Birds eye view of a canonical stereo system

in the left image plane S; and the right image plane S, with coordinates (z;,y;) and (z,, y,)
relative to the principal points, the already introduced disparity d of the point S is found
again as d = x; — x,.

Given the canonical setup in figure 5.20, the depth z of S can be calculated by exploiting
triangle similarities. For the left camera, the similar triangles S;P,C; and SI;C; give

n_ vt (5.7)
f z
For the right side, the similar triangles S, P,.C, and SI,.C, result in
% _ 7 - : (5.8)
The combination of equations 5.7 and 5.8 yields the distance z:
z= bf (5.9)

Xy — Ty
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Substituting equation 5.9 into eq. 5.7 allows to calculate the x coordinate of the scene
point S as
b+ )

= oo (5.10)

For the y coordinate, the application of the triangle similarities in the y-z plane yields
equation

Y Yy Yr
wo_y_u (5.11)
oz f
Combining equations 5.11 and 5.9, the y coordinate for S can be calculated as
b
y= 2 (5.12)
Ty — Ty

In summary, the three dimensional position (z,y, z) of the scene point S can be derived
from the known projections S; and S, with two dimensional coordinates (z;, ;) and (z,, y,)
relative to the image planes by

b(x; + x,)
2(w — ) T+ x,
* by b 9
Yyl = o — 1z, = p— Ui (5.13)
Ty — Ty

Sensitivity Analysis

The derived formulas reveal one major drawback of stereo reconstruction. Unfortunately,
the depth resolution (depth sensitivity) decreases rapidly with growing distance to the
camera head. This becomes obvious when taking the partial derivative of the depth z
with respect to the disparity d = x; — x, in equation 5.9, which results in:

bf 6= bf 2

d éd - &2 bf E-14)

According to this, the absolute sensitivity of the depth calculation decreases with z2. As
an example, let’s assume a stereo system with a baseline of 20 ¢m and a focal length of
200 pixels *. For objects at a distance of 1 m, the depth difference per pixel of disparity
is about 2.5 cm / pixel. Doubling the distance to 2 m, the depth difference per disparity
step is quadrupled to about 10 cm / pixel. In a distance of 10 m, it is already as high
as 2.5 m / pixel, effectively making precise depth recovery impossible. Thus, the depth
accuracy of a stereo camera system is distributed rather unequally over the range of the
system. Also, even disparity differences that are still easily resolvable by the matching
algorithms will lead to significant depth jumps. Any terrain modeling approach will need
to cope with this behavior.

4Given a calibration object with known dimensions, the camera calibration process allows to determine
the metric size of a single image pixel and thus, to convert focal lengths given in metrical units into an
equivalent length in pixels. This eases computation, as all other measures are also available in pixels.
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For the available camera setup with a baseline of &~ 0.5 m and a focal length of ~ 1893 pix-
els, the maximum working distance with a still reasonable sensitivity < 1 m / pixel can
now be estimated as

mae & 1| 1—— . 1893 Pixel - 0.5 m ~ 30.7 m (5.15)
Pixel

The disparity corresponding to this maximum distance is &~ 31 pixels, and thus the min-
imal acceptable disparity d,,;, can be set to 31. To increase the maximum range, the
baseline b or the focal length f could be increased, but this introduces new complications
such as higher algorithm runtime, a decreased probability of finding corresponding pixels
in the image plane for close objects or mechanical problems for the current pan/tilt unit.
Therefore, the maximum upper limit is retained.

The limit in the other direction is dictated by the fact that the utilized Birchfield imple-
mentation has a maximum disparity search range d,,q, of 255 pixels. With equation 5.9,
this value can be used to calculate the minimum z distance that the algorithm can handle
with the used stereo setup:

1893 pixel - 0.5 m
Zmin = .
255 pixel

~3.7m (5.16)

All objects closer than z,,;, are thus not considered during dense disparity calculation.
This poses no significant problem, as close range obstacle information is available from
the local obstacle memory up to a range of &~ 8 meters.

Transforming CCS coordinates into RCS

The last step of point cloud generation is to transform the obtained three dimensional CCS
point coordinates into the Robot Coordinate System RCS. From there, the transformation
matrices into ECS or a suitable node coordinate system NCS are already known and can
be performed easily.

Figure 5.21 shows a schematic drawing of the robot and the kinematic chain of the stereo
camera system. Included are the physical dimensions of each link (in the same unit as the

point coordinates) plus the source coordinate system CCS (red) and the target coordinate

system RCS (blue).
Based on this diagram, the homogeneous transformation matrix MESS can be constructed

using a concatenation of elementary transformation matrices by:

MEES =T - Ty - Rpan - R - Ts - Ragis (5.17)

In this sequence, R,.;s is responsible for rotating the CCS axes into alignment with the
RCS axes, effectively mapping CCS z onto RCS #, CCS y onto RCS —Z and CCS &
onto RCS —¢. Ry, and Ry, represent the rotation effected by the pan/tilt unit and are



142 5. Shape-Based Terrain 'Traversability Estimation

CCs z
:
O
CCs 7 >
RCS Z _ —
7

()
RCS 7 T =

[ nse ()

80 cm

Figure 5.21: Camera coordinate system CCS and robot coordinate system RCS

parameterized by the pan angle v and the tilt angle 5. Explicitly written, the matrix
concatenation appears as:

ERID) Rpan Ry
100 80 rcos*y —siny 0 0\ cosf 0 sinf 0
AECS _ 010 0] [siny cosy 00 0 10 0
cos 0 0 1 121 0 0 1 0 —sinfB 0 cosfB 0
000 1 0 0 0 1 0 0 0 1
100 0 0 0 10
01 00 -1 0 0 0
00109 0 -1 0 0
0001 0 0 01
T Rois

(5.18)
For a point S in CCS, the RCS coordinates S’ can now be calculated by applying the
homogeneous transformation matrices

S = MHSE - S (5.19)

Figure 5.22 shows the point cloud reconstruction of the example scene depicted in figure
5.18. The reconstructed features are depicted separately for each reconstruction algorithm,
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Figure 5.22: Reconstructed features

and a view from above the scene and a side view is presented. In all plots, the robot
coordinate system originates at (0,0, 0).

In both side view plots, the vertical calibration chart in the image foreground can be
identified clearly, along with the rising terrain behind it and the treetop close to the limit
of the system range. Furthermore, the different accuracies and outlier rates of the sparse
reconstruction algorithm compared to the dense algorithm becomes visible. Especially
at longer ranges, the smallest possible disparity changes form distinct depth steps in
the features reconstructed by the dense disparity algorithm. Nevertheless, the merged
point cloud, created by combining all reconstructed points from both sparse and dense
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Figure 5.23: Point cloud containing sparse and dense features (view from top left)

reconstruction, shown in figure 5.23 captures the relevant terrain outline quite precisely,
in a range from ~ 5 to 30 meters.

Merging Point Clouds from Multiple Images

The process presented above produces a cloud of points as a result of a single image
acquisition. To cover a larger area of the surrounding terrain, several images with different
settings of the pan/tilt unit can be reconstructed and merged with each other in the RCS
coordinate system. The following traversability estimation steps can then process a single,
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large point cloud and abstract from the sequential construction. The number of images
can be chosen as desired. For the used stereo system setup, a value of 7 images per
sweep has proven sufficient to cover the available working space of the pan unit without
introducing gaps between the different shots.

As a final remark, the transformation values as well as the angles calculated by the pan/tilt
units motor movements naturally include a certain measurement error. Consequently, the
3D position of each reconstructed point differs from the exact position of the correspond-
ing feature in the scene. These effects are not considered further, because traversability
estimation does not require an overly exact, absolute reconstruction of feature positions.
Instead, the relative arrangement of points in relation to each other are much more inter-
esting. Subjectively, for the working range up to 30 m, these relations are sufficiently well
captured with the presented approach. An objective, quantitative evaluation of this im-
pression requires a carefully surveyed or constructed outdoor scene and is deemed future
work.

5.2.3 Terrain Modeling

After a three-dimensional point cloud outlining the terrain surface has been constructed,
the reconstructed points can be abstracted into a representational form which supports
reasoning about terrain traversability. A popular model for this is the digital elevation
map (DEM) [Cremean 06] [Pollefeys 01]. Recapitulating the exposition in section 3.1.1.1,
DEMs are grid maps storing the overall terrain height of a certain metrical patch (e.g.
1 m x 1 m). By considering height differences between neighboring cells, traversability
scores can be computed. However, details such as the ‘real” slope of the patch are lost and
a distinction between patches containing abrupt steps and those representing continuous
slopes becomes impossible.

A more accurate terrain model can be produced by fitting planes [Weingarten 03] or tri-
angular meshes [Gemme 05] to the terrain surface. These planes can approximate gently
sloped terrain much better than elevation maps. However, the plane fitting requires more
accurate information for reliable operation than the construction of a DEM patch. There-
fore, this model has been predominantly used for indoor applications [Weingarten 03],
which require shorter ranges and thus obtain point clouds with higher densities.

The terrain model developed in this thesis extends the state-of-the-art methods and adap-
tively combines both terrain model types in order to benefit from their respective strengths.
More precisely, areas exhibiting a high density of accurately reconstructed points are ap-
proximated with sloped planes that retain the crucial information about predominant
slopes. In areas unsuitable for this procedure due to a lack of points or inherent non-
planarity, the method falls back to elevation map modeling using elevation planes with-
out slope information. The goal of this strategy is to increase the range of the vision-based
traversability estimation system in comparison to a pure plane fitting approach. At the
same time, nearby terrain is modeled more accurately than a pure DEM technique would
allow, enabling the robot to estimate terrain traversability with higher precision.

Spatial Segmentation

Both representational forms model the surrounding terrain piece by piece and therefore
depend on a spatial segmentation of the obtained point cloud. Because the integration
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of the final results into the existing cost estimation mechanism is best accomplished by
generating an additional local traversability map with the layout described in section
4.1.3.1, the point cloud is segmented according to the sector / seclet structure introduced
there. Given a topological node to which the derived traversability information shall be
attached, the obtained point cloud is thus first transformed from RCS (via ECS) into
the node coordinate system of the selected node. Then, all reconstructed 3D points are
assigned to their corresponding seclets according to the points’ x and y NCS coordinates.
For each seclet s, two point sets are created: one set M of features stemming from the
accurate, sparse feature reconstruction algorithm and another set M, with features that
were derived with the less accurate, dense reconstruction method.

Figure 5.24 exemplarily shows the segmentation of the sparse feature point cloud depicted
in figure 5.22a. For this segmentation, the associated topological node (marked with a
black dot) is placed directly at the position where the image pair was originally captured,
so that RCS and NCS origins coincide. The back 180° of the map and the seclets with
distance 0 — 2 m are omitted to increase readability.
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Figure 5.24: Spatial segmentation into seclets

5.2.3.1 Seclet Approximation with a Sloped Plane

After point distribution, each seclet is considered in turn. Seclets with a sparse point set
Mg = {po,...,p,} containing more points than a threshold r, are considered as candi-
dates for approximation with a sloped planar surface. In order to guard against outliers
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in M,, the approximation is implemented using a plane fitting approach that employs
the RANSAC algorithm (which was already used for outlier-robust linear regression in
section 4.1.1). This technique has already been used for planar representation of walls
in indoor environments and is extensively described in [Weingarten 03] and [Wettach 07].
The RANSAC formulation of the planar approximation technique proceeds as shown in
the pseudo-code algorithm 10.

Algorithm 10: ApproximatePointSetWithSlopedPlane
Data: Point3DSet M, of features from sparse reconstruction
// planes are represented as a pair:
// (Point3D center_of_gravity, Vector3D plane_normal)
Result: (Point3D center, Vector3D normal) of the best fitting plane for M,
begin
Point3DSet R4z < 0
Int 700 — 0
for i = 0 to num_ransac_iterations do
Randomly select three points p1, pa, p3 € M,
if p1, pa, p3 are not colinear then
Construct plane (¢, ) from pi, p3, p3
R = all points € M, with distance to plane (¢, 1) < dpqz
if |R| > 7pae then

R.. =R
Tmaz = |R|
end
end
end

// construct least-squares optimal plane from largest inlier set Ryq.
(Cpests Tipest) = FitPlaneToPointSet (R, az)

return (Cpest, Mpest )
end

Algorithm 10 considers points with a distance smaller than a threshold d,,,, are considered
inliers and added to the inlier set, all other points are classified as outliers. After several
repetitions of this classification process, the plane supported by the biggest inlier set R,,q.
is selected. Finally, its pose is recomputed using a least-squares fitting of all inliers.

Parameter Selection

In addition to the input point cloud, the RANSAC algorithm depends upon the two
additional parameters num_ransac_iterations and d,,,,, which need to be set appropri-
ately.

A higher number of iterations for the RANSAC algorithm increases the probability of
finding planes with a high number of inliers, but also increases the total runtime costs.
Given a desired probability p of taking at least one sample with all three points pi, p3,
p3 being inliers, a value for num_ransac_iterations can be calculated as discussed in
[Hartley 03]. The main prerequisite for this is the proportion € of real inliers to outliers
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in the dataset. If this ratio is known, the number of iterations N to perform can be
calculated as

__ log(1—p)
log(1 — (1 —€)%)

The proportion of inliers to outliers varies strongly depending on the geometrical shape
which is represented by the points in a given seclet. While a flat groundplane is expected
to contain only a few outliers, a bushy treetop will strongly increase the probability of
randomly choosing an outlier for the sample set.

(5.20)

Since ‘correct’ estimates for e are difficult to obtain, a conservative value of € = 50%
is assumed. According to this assumption and equation 5.20, a total of 35 iterations is
sufficient to construct a valid plane with a probability over 95%.

The inlier distance threshold d,,,, has been estimated empirically. A range of 15 — 40 cm
yielded the best results during experiments.
Implementation of the FitPlaneToPointSet Method

The FitPlaneToPointSet method constructs a plane (Cpest, Tipes;) Which minimizes the sum
of the squared distances between the plane and all of the inlier points p; € R,,q.. First,
the plane is expressed in its Hesse Notation

i-p—d=0 (5.21)

which can also be noted as

Uy + Uyl + U2z —d =0 (5.22)
with 4 = (ux,uy,uz)T and p; = (a:i,yi,zi)T .

By requiring d # 0 (which can easily be ensured by relocating the origin of the coordinate
system), this can be rewritten as

NgTi +NyY; + 1.2, +1 =0 (5.23)

with 7 = (ng,ny, nz)T being the normal vector for the plane. Using this equation, the
objective is to minimize S in

‘RmaT‘
S = Z (npmi + nyy; +n.z; + 1)° (5.24)

i=1
To find the minimum S, the sum in equation 5.24 needs to be partially differentiated with
respect to n,, n, and n, and set to zero afterwards, resulting in

ﬁbest = A_l - b (525)
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with

A=\ Yoy 2v Dyis and b= —>u |. (5.26)

This equation can be solved using standard linear algebra techniques.

After determining the plane normal, the center of gravity cps for the plane can be calcu-

lated as follows: )
R (5.27)
’Rma:pl

Chest =
A more detailed discussion of this algorithm can be found in [Weingarten 04] or [Wettach 07].

Planarity Check

After fitting the least-squares optimal plane to M, it becomes possible to check whether a
planar approximation was indeed reasonable for this point set. This check is based on the
ratio r = | Rz |/|Ms| between the number of RANSAC inliers | R4, | and the cardinality
of M. If the ratio falls below a level r,,;, (typically set to 0.6), it is assumed that the
seclet’s point set actually describes a distinctively non-planar surface (such as a tree top)
and a linear representation would be overly simplistic and inaccurate. Consequently, the
sloped plane is discarded and the seclet is approximated using an elevation plane only. This
prevents the subsequent traversability estimation algorithm from placing false confidence
into the inappropriate slope information.

Combination with Predecessor / Successor Seclet

With increasing distances from the camera position, the number of reconstructed sparse
points in each seclet tends to decrease. A major cause for this effect is the constant seclet
length of 1 m, which leads to a reduced image footprint of seclets at larger distances due
to perspective shortening. This effect is especially pronounced in flat terrain because of
the very low viewing angle.

In order to reduce this problem and increase the total number of seclets that can be
modeled with a sloped plane, a ‘rescue attempt’ is performed for seclets that do not fulfill
the | M| < ks constraint, but still contain some points (checked with | M| > & against the
threshold « introduced in the next section). This rescue attempt is implemented as follows:
First, the point set M, is tentatively combined with the point set M| of the predecessor
seclet, lying in the same sector, but 1 m closer to the map origin. If the combined set
holds more than k4 points, the described plane fitting algorithm is executed using this set.
Then, the inlier ratio is calculated for the resulting plane using the seclet’s own points
only, effectively computing the fraction of points in M, with a distance of at most d,,q.
to the plane. This procedure is then repeated with the current seclet’s successor, again
lying in the same sector, but 1 m further away from the map origin. Finally, the plane
with the higher inlier ratio is used to model the current seclet, if that inlier ratio exceeds
Tmin. 1f this condition is not met or the combined sets also contained too few points for
plane construction, the rescue attempt has failed. In this case, it is tried to model the
seclet with an elevation plane as discussed in the next section.
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Example

Figure 5.25 contains an example for the results obtainable by the sloped plane approxi-
mation method.

(b) Robot perspective (c) Fitted planar approximation

Figure 5.25: Simulated scene with fitted sloped planes

Figures 5.25a and 5.25b show an overhead view and the robot’s perspective of an example
scenario generated with the SimVis3D simulation framework. In this scene, the robot is
placed near the foundations of a bridge and senses both the steep slope rising upwards
besides the bridge and the vertical bridge support. Figure 5.25¢ displays the result of plane
fitting using the source image from figure 5.25b. The extracted planes are visualized using
a series of concentric circles which lie within the respective plane and are centered at its
center of gravity (COG). The circles are clipped against the corresponding seclets borders
and backprojected into the image to allow easy visual matching with the analyzed scene.

The result shows that the piecewise planar approximation captures both the geometrical
shape of the sloped terrain and the vertical planar man-made structure well. As will
be presented in section 5.3, the quality of this result is comparable to the performance
achieved in real-world situations.

5.2.3.2 Seclet Approximation with an Elevation Plane

If a seclet was not modeled using a sloped plane due to either the |M,| > k4 or the
7 > Tmin constraints and also could not be rescued by adding points from the neighboring
seclets, the terrain modeling algorithm falls back to using an elevation plane containing
only a height value and no slope information. Because the exact location of a point is
not as relevant for this model as for a sloped plane, elevation plane construction can be
performed using the combined point set M = M, U M,. This set encompasses both the
accurately localized points from the sparse stereo algorithm and the less accurate data
reconstructed using the dense disparity algorithm. Of course, the elevation plane model
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also requires a minimum number of points to work reliably. Therefore, if fewer points than
k with Kk < k4 are available in M, the seclet is completely excluded from terrain modeling.

For all other seclets, the elevation plane’s height A must be determined in a way that is
again robust against the presence of outliers. Therefore, it is not sufficient to set h equal
to the maximum of all point z coordinates in M. Instead, a technique has been developed
which determines the most pronounced ‘density change’ in the seclet’s point set. The
rationale behind this approach is the assumption that a stable surface is characterized by
a high point count near the surface level and a much lower point number above it.

The detection of such a density change is achieved using a difference operator with
a selectable height hg, typically chosen in the range of 20 — 40 cm. To determine the
optimal operator placement given a seclet’s point cloud M, the operator is placed at the
height z of each point p € M in turn. For each position, the number of points lying
closely below the difference operator level is counted: npos = ||{ (24, 4i,21)" € M | z—hg <
zi < z}||. From ny,s, the number of points closely above the operator level is subtracted:
n = Npos — |[{(zi,yi, %) € M | 2 < z < z+ hg}||, resulting in the final score n for
this operator placement z. After iterating the operator position over all points in M, the
height that resulted in the highest score is chosen as the height h of the elevation plane.

z z z
. : t ¢
X L4 o X * % . Cd h + hd
o.‘:.. :' .' "s.‘ o ':.. :' :.' "\.‘ .o. 5 .::- I h
. AL T Tl LT e T. ARl LY
L NS e 2T 2 A h— hy
Y ® o0, ® o0 . 3 ® o ® o® . 3 ® o ° o0 -
A L4 .‘ [ 1] L . .‘ [ o o0 ° . ° . [] ®, o °
e oo . S ° e 0 ‘o 3 .. e e °o ° 3 ..
:' .. ® o0 o :.o :\ o8, : e ® 0 :.o e o8, ® a0 0 °, :\
e® o © L4 . [ 13 oo e® o O L . [ 7S L) e® o O L - [ 7S )
%o W ° ° .'. o %e W ° ° .'. o® %e W ° ° .'. o
x > T xr
(a) Noisy point cloud (b) Begin of height search (c) Optimal operator height

Figure 5.26: Determining the optimal elevation plane height in a noisy point cloud

Figure 5.26 shows an example of the process. A very noisy point cloud with a high point
density at the lower part and a low point density above is shown in figure 5.26a. Such
a point cloud can be seen as a typical data set for a seclet containing an obstacle (like
a hedge) with a flat surface observed from a frontal direction. Now, in order to find the
right surface level, the difference operator is iteratively moved over all point heights and
the score n is calculated for each position. Figure 5.26b shows the begin of the search,
with the operator anchored at the highest point in the cloud. This position (which is
identical to the naive maximum height strategy) results in the score n = 14. However,
the maximum score is indeed found at the intuitively optimal placement shown in figure
5.26c. As desired, the difference operator approach effectively discards sporadic outliers
that have high z-values without an underlying foundation of additional points.
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‘Settling’ the Elevation Plane on Thin Surfaces

Although the developed difference operator is able to detect the most prominent density
increase in a noisy point cloud with high reliability, the position with the highest score
can be offset a bit (0 — hy cm) above the optimal level for point clouds with a special
point distribution. This effect occurs when the point cloud models a thin surface, e.g. a
surface whose points are distributed within a height range h, less than the operator width
hg (see figure 5.27a for an example). In such a case, the operator is not pulled below the
lower rim of the thin surface, since there are no (or very few) further points in that area
that could contribute positively to the operator score. Consequently, the operator obtains
the highest possible score at the position depicted in figure 5.27b, with the positive score
region ending directly at the lower edge of the thin surface and the operator level proturing
hg — hs above the real surface.
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Figure 5.27: Settling the elevation plane onto thin surfaces

In order to correct this, the height estimation algorithm for the elevation plane is aug-
mented with a second step. Initially, the difference operator is placed at its preliminary
optimal position h as described before. Now, the operator is ‘settled’ on the real surface
by reducing the height of the positive support region size iteratively in small steps and
moving the operator downward accordingly. In each step, the operator score is recom-
puted. However, the reduced positive region size is compensated by extrapolating the
point density within the remaining area (with height ;) onto the original size hy by com-
puting np.s = (ha/hl)npes. In effect, this allows the operator to increase the contained
point density (and thus the score n) in the positive region step by step while shrinking
it down to the size hg of the thin surface. Finally, the best score is obtained at the real
surface level as shown in figure 5.27c. With this extension, the elevation plane height is
placed at the correct level even in cases where the point cloud models a compact, thin
surface.

5.2.3.3 Conclusion

To conclude the presentation of the developed terrain modeling algorithm, the control
flow of the entire method is shown in figure 5.28.

This flowchart summarizes the different approximations and checks that are done in order
to generate a planar model for a seclet, given two point clouds from stereo reconstruction.
There are three possible outcomes for the model: A sloped plane, an elevation plane or no
plane at all. The decision which one of these models is used depends upon the accuracy
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Figure 5.28: Flow of terrain modeling algorithm

of the point cloud within the seclet — a large number of accurate points along a mostly
planar surface results in a sloped plane, fewer points (that may be arbitrarily distributed)
yield an elevation plane, and very few points result in no model for this seclet.

5.2.4 Traversability Analysis

The result of the terrain modeling step is a seclet map approximating the geometrical
shape of the terrain with seclets containing either sloped planes, elevation planes or no
plane information at all. Both sloped and height planes are characterized in the same way
by a normal vector 77 and a center of gravity (cog) c. For elevation planes, the center of
gravity is set to the estimated height: ¢ = (0,0,k) ", and the plane normal is the negated
gravity vector: i = (0,0,1)", indicating a perfectly flat surface.

To decide whether the robot can actually traverse a seclet given these planar approxima-
tions, some assumptions need to be introduced. First, all derived planes are considered
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load-bearing. Second, the vehicle’s mechanical capabilities are modeled by the maximum
slope a4, and the maximum step h,,q, it can successfully traverse. Third, as done before
in section 4.1.3.3, it is assumed that the robot’s possible driving options can be repre-
sented as straight lines from the center of the map towards the center of a seclet lying in
the desired direction. Thus, every map sector .S, contains a single path to consider, and
the seclet s' has si-! as direct predecessor and si! as direct successor seclet along this
path.

2 e T s gr:) H B
> / / /

Figure 5.29: Parameters for traversability analysis

If both 5%, and s’ ! contain valid planes described by (7, ¢) and (n,, ¢,), it is possible to
compute transitional steps between the two seclets (see figure 5.29). This is accom-
plished by inspecting the z distance of the planes at the rim of the common seclet border.
At both of the common seclet corners, a vertical straight line g; and g, is intersected with
the two planes. The distances d;, dy between the resulting intersection point pairs (plp, pl)

and (prp, p,,) provide two step heights.

Furthermore, the relative orientation ¢ of the planes with respect to each other can be
determined easily by calculating the inverse cosine of the dot product of the two plane
normals: ¢ = cos™! (7i - 1;,).

The absolute orientation of the plane (7, ¢) with respect to the gravity vector (0,0, —1)"

and the assumed driving direction can be computed as follows: First, two helper vectors
t and @ (with £Li) are constructed as shown in figure 5.29. f is the normalized vector
running in the path direction of the current sector, e.g. heading from the map origin O
to the center ¢, of s! in the x/y plane:

t=10c| = | ¢, (5.28)

il is orthogonal to both t and (0,0, 1)T and can thus be determined by

I
o
8

0
i=10] xt (5.29)
1
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Now, the plane normal 77 is decomposed into two orthogonal vectors n; and n,, lying in
the planes spanned by 77 and the two helper vectors:

i (5.30)
t (5.31)

Finally, the absolute roll and pitch angles a and 3 of the sloped plane with respect to
both the gravity vector and the assumed driving direction can be computed by solving for
«a and [ in equation

—

0
ng Ny, | = Rypyla,B,7)- |t @ 0], (5.32)
1

with R,,, defined as the concatenation of three rotation matrices that rotate the coordinate
system with angles «, # and v around the three primary coordinates axis according to
the roll, pitch, yaw conventions. Given R,,,, the three source angles can be determined
analytically, as shown in [Craig 89], pp.47.

By construction, the yaw-angle 7 is 0 in this case. « is the absolute slope of the approxi-
mated plane in driving direction, 3 is equal to the absolute slope orthogonal to it.

Necessary Conditions for Traversable Seclets

Based on the derived parameters, the following four conditions can be defined to decide
if a given seclet s! is traversable:

laf < s (5.33)

18] < az (5.34)

Iy - 7| < cos (Qmax) (5.35)
max(|di],|d2]) < Punaa (5.36)

Conditions 5.33 and 5.34 ensure that the maximum absolute inclination in direction of
the path («) and orthogonal to it () remains below the maximal slope climbable by the
robot. In case there is no usable plane available in the predecessor seclet s-1, only these
conditions are checked. Otherwise, condition 5.35 is used to limit the allowed orientation
difference (which may either cause high-centering of the vehicle or contact of the bumpers
with the ground) between the two seclets. Condition 5.36 is used to detect steps and
torsion between two adjacent seclets. As long as the determined step heights are less or
equal Az, the seclet junction is considered traversable.

Risk and Effort Estimation

In order to transform the traversability information into risk and effort cost modificators
that can be inserted into a local traversability map, a simple heuristic has been developed
based on the estimated plane parameters. It is straightforward to replace this heuristic
with a more sophisticated model that represents the costs of different slopes and steps
more accurately, but this would require a lot of experiments in a well controlled test en-
vironment containing defined obstacles and terrain slopes. Formulated somewhat bluntly,
the expected precision gain has not been judged as worth the effort required for this.

Instead, the cost heuristics has been formulated as follows:
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1. If the seclet is found untraversable according to conditions 5.33 — 5.36, both risk
and effort cost modificators are set to the maximum values: (r,w) = (1, 1).

2. Otherwise, the seclet’s risk value is determined by the absolute transitional step
height between the seclet and its predecessor, set into relation with the maximum
possible step hpe.. Thus, r is determined by

r = ma’X(|d1| ’ |d2|) (537)

hmaac

Since the existence of a step can only be detected reliably when slope information
is available, the risk is only calculated according to equation 5.37 if both planes are
sloped planes. If one is an elevation plane, it is optimistically assumed that its slope
favors the transition between the two seclets. Therefore, no risk penalty is enforced
in this case.

3. A traversable seclet’s effort value is determined by the absolute plane orientation in
the path direction of the current seclet, with respect to the maximum possible slope
Qmaz- Thus, w is determined by

w— max(|al, 0) (5.38)

amax

As can be seen, negative slopes do not provide an effort bonus with this heuristics. This
is done because the quantitatively correct estimation of negative slopes is barely possible
based on stereo images. Negative obstacles are almost invisible when seen from a low
height (such as the robot camera head’s mounting position). Therefore, it has been decided
to treat negative slopes neutrally as planar surfaces to avoid reasoning on potentially
unreliable data.

The confidence values (6,,6,,) for each seclet that holds either a sloped plane or an ele-
vation plane are set to (0.8,0.8). This value represents both the fact that the long range
terrain traversability estimation is less reliable than the local obstacle model (whose cost
information is assigned reliability values of (1,1)) and the typical error characteristics
found in a variety of experiments in different terrains.

Integration

As already hinted at before, the derived cost modifiers are included into the cost predic-
tion mechanism presented in chapter 4 by filling them into a separate local traversability
map similar to the one defined in section 4.1.3.1. This map is subsequently attached to
the topological node for which the shape-based terrain model has been constructed. It
complements the already existing local map containing the cost information from the lo-
cal obstacle memory. If the cost estimation mechanism needs to retrieve the stored cost
modifiers for a specific seclet, the reliability scores of the two corresponding seclets in both
local maps are compared. Then, the pair of cost modifiers with the higher reliability score
is returned for cost prediction.

In effect, this lets the robot use the local obstacle memory for cost estimation in the local
vicinity of the topological node and allows it to switch seamlessly to the shape-based cost
estimation technique at longer ranges.
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Example

Figure 5.30 shows the results of performing the described traversability analysis on this
chapter’s running example image from figure 5.18.

[ Traversable sloped plane

B Non traversable sloped plane

I:l Sloped plane ‘rescued’ with neighbor’s points
B Traversable elevation plane

B Non traversable elevation plane

|:| Sloped plane failed planarity check

SRR 28K
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B [osufficient (but > 0) points for elevation plane
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(b) Seclet traversability (¢) Seclet color code key

Figure 5.30: Example scene after traversability analysis

In figure 5.30b, the estimated seclet traversability is shown. For this and the following
experiments, the parameter set listed in table 5.3 was used. The three circled groups of
seclets that have been found untraversable correspond to the bushes in the center left of
the scene (A) at a distance of ~ 30 m, the large tree on the right (B) with comparable
distance and the calibration object in the image foreground (C), which was placed at
a distance of 10 meters from the robot. Both the distances and the bad traversability
of these objects have been determined correctly by the proposed method. However, one
seclet has been found untraversable by mistake, as the sand pit on the far right is actually
shallow enough to be traversed. However, the bad view angle caused the sloped plane to
be placed in such a way that the transitional steps are exaggerated and estimated to lie
above hyqz.

This scenario is a good example of the benefit provided by the combination of building
planar approximations both with and without slopes. While the terrain to the left and the
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Param. Value Parameter Meaning

Ks 45 number of points required in M, for sloped plane approximation
K 25 number of points required in M for elevation plane approximation
dmaz 80 mm maximum allowed distance of inlier point from sloped plane

Tmin 0.6 required percentage of inlier points in M for sloped planes

hq 40 cm height of the difference operator for elevation plane modeling
maz 40° maximum traversable slope

hmaz 35 cm  maximum traversable step

Table 5.3: Parameters used in the experiments

right of the calibration plate contains enough points to be modeled accurately with sloped
planes, the object casts a ‘point shadow’ onto the seclets directly behind it (compare
with figure 5.24), which precludes accurate estimation of the terrain slope. Consequently,
the approximation falls back to pure elevation based modeling in this area (marked with
dim green and red colored seclets), which at least suffices to model the overall rise of the
ground accurately. If this fallback mechanism had not been developed, no information
of the terrain behind the calibration plate would have been available at all and this well
traversable area would have been missed. The same argumentation holds for distances
above 24 meters, which also exhibit such a low point count that they can only be reliably
modeled without considering slope information.

5.3 Experiments and Results

In the following, experimental results are presented for several different outdoor scenarios.
For each result, four images are shown. First, the left input image is presented, annotated
with the found planar approximations. Second, the corresponding traversability map is
shown, using the color key given in figure 5.30c. Finally, the computed risk and effort
cost modifiers are depicted. These modifiers are the sole information that is retained after
the terrain analysis has concluded and represents the final outcome of the entire method
described in this chapter. The color key used for these maps is identical to the colors used
for the already existing local traversability map: green seclets indicate a cost modifier of
0, yellow stands for 0.5 and red seclets have the maximal cost of 1.

Figure 5.31 exhibits two peculiarities, which have been marked with circles A and B.
Mark A is placed around the seclets occupied by a boulder and a service box, which have
been correctly judged as untraversable obstacles. In contrast, the seat ring to the left
of the boulder is marked traversable although the seats constitute a step obstacle which
cannot be passed in reality. A cause for this is the bad viewability of the seats, which has
precluded a more accurate modeling with sloped planes that would have been vertically
oriented and thus found untraversable in accordance with the true circumstances. Mark B
highlights the upward slope in the background of the scene. Agreeing with the estimated
slope, the predicted effort increases significantly.

To give an overall impression of the effect on path planning caused by the analysis results,
a cyan arrow indicates the path alternative with the lowest cost given the cost modifiers
shown in figures 5.31¢ and 5.31d.



5.3. Experiments and Results 159

]
““:‘“‘ ]
(75 RS RSN

(c) Estimated risk (d) Estimated effort

Figure 5.31: Example scene after traversability analysis

The second image shows the ring of seats more fully and also contains a larger part of the
rising slope in the background. As in the previous image, the sloped plane approximation
captures the overall terrain layout well and the estimated effort cost factor models the
rising terrain surface appropriately. However, the area around the ring of seats (mark
A) is only represented using elevation planes, due to the same reasons as discussed for
the last figure. Because the steps between elevation planes are judged optimistically (as
long as their size remains below the traversability limit h,,..), they do not impose a risk
penalty and the ring of seats is not recorded as a cost relevant obstacle. Nevertheless,
the cheapest path does not cross the seats, due to the effect of the step heights on the
estimated effort.
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(c) Estimated risk (d) Estimated effort

Figure 5.32: Example scene after traversability analysis

Figure 5.33 shows a more obstructed scenario. The shape-based traversability analysis
marks both the large tree (mark A) and the building wall (mark B) as untraversable
obstacles. Map seclets that are not covered by one of these two obstructions are correctly
identified as flat and traversable. This scenario highlights a shortcoming of the proposed
terrain modeling method in connection with overhanging obstacles. Although the tree
top overarches the path and is correctly identified as not passable, the clearing below the
tree is (at least partially) sufficiently high to let the robot pass underneath. In order to
allow the correct modeling of such overhanging obstacles, a further processing step must
be implemented to segment the seclet’s point cloud at the robot’s height.

Figures 5.34, 5.35 and 5.36 depict further results that have been obtained at several
locations around the campus of the University of Kaiserslautern.
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Figure 5.33: Example scene after traversability analysis

5.4 Conclusion

The shape-based traversability estimation method presented in this chapter has been de-
veloped to augment the cost prediction capabilities of the topological navigation system
at longer ranges. For this purpose, a terrain model has been proposed which can approx-
imate the surrounding terrain either using planes containing slope information or purely
height-based elevation planes. The obtained experimental results show that the novel
combination of these two established models indeed allows to extend both range and ac-
curacy of the obtained terrain model compared to just using a single variant. Overall, the
method has been proven to be applicable to a variety of different outdoor environments
and generate sensible terrain traversability cost estimates within a range of up to 30 me-
ters. The extracted information can be used to optimize path planning and avoid large
scale obstacles or significant terrain slopes.

Due to the design and parameter decisions made during the development of the algorithm,
the traversability estimation tends to be rather ‘optimistic’. One example of optimistic
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(a) Scenario

Figure 5.34: A hill and a hedge

(a) Scenario (b) Traversability map

Figure 5.35: A curved road

Scenario (b) Traversability map

(a)

Figure 5.36: A second curved road
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design is the fact that transitional steps are not counted as a potential problem if elevation
planes are involved. While this assumption causes small obstacles such as the ring of seats
to be erroneously judged as traversable due to its relatively low height and small image
footprint, such optimistic decisions can be corrected later once the robot approaches the
relevant area using the pilot’s local obstacle avoidance strategies. A more pessimistical
tuning would preclude any closer examination of uncertain traversability in the first place
and thus reduce the robot’s number of potentially good exploration choices.

Although the presented method does already provide significant advantages in hilly ter-
rain containing natural obstacles such as trees or hedges, the application in more densely
vegetated environments requires the extension of the proposed method in order to treat
overhanging objects more appropriately. This extension can be implemented by segment-
ing the obtained point cloud of a given seclet according to the height of the estimated
surface level in the neighboring seclets plus the minimum safety distance required for
the robot. However, as a sound development would require an additional intense testing
phase, this extension has been postponed in the scope of this thesis and is deemed future
work.
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6. Appearance-Based Terrain
Traversability Estimation

In the last chapter, a method was presented to estimate terrain traversability using geo-
metric aspects like surface slope, planar orientation and height variation. However, this
approach does only consider the three-dimensional outline of the visible terrain and treats
non-rigid vegetation such as tall grass or small bushes exactly like tall stones or rigid fences
with a similar shape. As a consequence, the robot navigation system discards actually
traversable paths through such flexible obstructions.

To improve the performance of the robot especially in vegetated terrain, both the piloting
layer and the navigator need to be able to handle soft obstacles, which might appear solid
to shape-based analysis methods but are actually traversable. For the pilot, a force feed-
back ‘tactile creeping’ strategy has been proposed (see [Schiifer 08]). With this strategy,
a potentially soft obstacle is approached slowly and pushed with the front bumper. If the
bumper is not depressed slightly during this process, the obstruction is treated as a flexi-
ble part of vegetation which may be traversed. For the navigator, such a local strategy is
infeasible. Instead, a terrain analysis method with the capability to distinguish between
flexible vegetation and really impassable obstacles from a large distance is required.

This chapter presents a traversability estimation method which has been developed to
address this need. It estimates the traversability of the environment without relying on
its potentially misleading geometrical shape. Instead, the approach is based on visual
terrain appearance as data source. In order to cope with the high variability of out-
door terrain, multiple complementary visual features are extracted and used for image
segmentation and terrain classification. As with the shape-based approach, the result-
ing traversability information is stored into a local traversability map and thus becomes
available to the cost prediction algorithms in a transparent and consistent fashion. Addi-
tionally, because static rules for terrain classification based on visual appearance do not
adapt well to previously untrained situations, a self-supervised online training scheme is
proposed in order to allow the robot to update its classification model and enable it to
work even in novel environments without explicit classifier training. The approach was
formulated in cooperation with B. Seidler [Seidler 08], F. Faust [Faust 08] and G. Zolynski
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[Zolynski 07]. The obtained results have been summarized and published in [Braun 08¢
and [Zolynski 08].

The remaining chapter is structured as follows: Building upon a short survey of related
work in section 6.1, section 6.2.1 provides details on the three complementary visual fea-
tures texture, contrast and color. They have been selected as suitable means to extract
characteristical appearance information from a source image. This section also describes
the extraction process itself. The developed traversability estimation method then pro-
ceeds to segment the image data into homogeneous regions based on the extracted feature
signatures, which is described in section 6.2.2. Afterwards, the assignment of traversability
scores to the segmented image regions using a k-Nearest-Neighbor classifier is described
(section 6.2.3) and the online learning scheme is presented in section 6.4. Experimen-
tal data, a final discussion of the obtained results and an outlook to future perspectives
conclude this chapter.

6.1 Related Work

Two main classes of appearance-based terrain classification methods can be distinguished.
One class relies on statically trained databases that link terrain appearance and traversa-
bility scores. Methods of this class can be employed without further delay in the environ-
ment that they have been developed and trained for, but they face problems in situations
which differ from the original training phase due to e.g. seasonal changes, different light-
ing or weather changes. The other class of traversability analysis methods includes a
continuous, self-supervised learning component able to adapt the classification database
constantly during robot operation. Since this allows a more flexible and autonomous
robot operation, most of the recently proposed appearance-based terrain traversability
estimation methods fall into this second category.

In the following, a short overview of the most prominent approaches from both of the two
major classes is presented.

6.1.1 Statically Trained Approaches

P. Belutta et. al. [Bellutta 00] [Manduchi 05] combine LADAR, radar, and color as well
as infrared cameras to navigate autonomously in vegetated off-road terrain with the un-
manned ground vehicle DEMOIII. Geometric information from stereo vision is used to
recover the 3D scene structure in order to detect obstacles. Both elevation and obsta-
cle maps are created through triangulation. The terrain surface itself is analyzed using
color information. A fast bayesian classification algorithm is trained on a priori labeled
images and used to characterize the detected obstacles into different classes based on the
observed color distribution (figure 6.1). Then, traversability characteristics are inferred
from each point’s assigned class. Although the experiments show the principal usability of
the presented approach, they also highlight changing illumination conditions as a central
problem of the solely color based terrain classification approach, especially when shadows
are present in the observed scene.

The initial approach of P. Belutta et. al. was improved later by A. Talukder et. al.
[Talukder 02]. Here, the terrain classification performance is optimized by adding texture
analysis to the color classification scheme. A multi-scale, multi-orientation Gabor filter
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a) Input image b) Classified image
(a) Inp g (b) g

Figure 6.1: Color based terrain classification in [Bellutta 00]
The color code used for (b): brown: soil/rock; yellow: dry vegetation; green: green vegetation; red:
outlier

bank is utilized for the extraction of textural features, which are subsequently classified
using a gaussian mixture model and maximum likelihood classification. For the color-based
material classification, the same bayesian color classifier is used as in the original approach.
Both classifiers are trained with sample images that are labeled with the three terrain
surface classes shown in figure 6.1b: ‘green vegetation’, ‘dry vegetation’ and ‘soil/rock’.
Experimental results show that the fusion of both color and texture classification leads to
a more robust obstacle recognition and traversability estimation than each single method
alone. The approach was shown to be useful for navigation and path planning, especially
in off-road terrain. However, the presented experiments cover only arid and sparsely
vegetated environments.

In a different research project, terrain traversability assessment was done with three
scales of resolution [Seraji 03]. The three scales are local, regional, and global traver-
sability indexes. For local traversability a set of linguistic rules to locate obstacles and
surface-softness with on-board sensors is used, while regional traversability is estimated
rule-based from video images heeding roughness and slope; for global traversability, a ter-
rain topographic map is created. Each traversability index is represented by fuzzy sets,
corresponding to the safety for traversal of this region.

6.1.2 Learning Techniques

There are two important reasons to employ machine learning techniques for traversability
estimation tasks. For one, changing environmental conditions can lead to poor long term
performance of terrain classification algorithms that are based solely on static rules. In
order to adapt to new situations, some kind of learning strategy is required instead.

Another application of learning with regards to traversability estimation is sometimes
referred to as Near-to-Far Learning [Hadsell 07b]. Here, the goal is to train one com-
ponent of a robot’s sensor suite which has a wide range but (initially) little traversability
information (like a stereo camera) with labels provided by another component that has
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only a limited scope but more reliable traversability information (e.g. a bumper system).
In order to achieve this, the traversability data of the short range sensor must be corre-
sponded with feature information obtained by the long range sensor. For this, a local map
or memory is often used as temporary storage.

D. Kim et. al. [Kim 06a] motivate their near-to-far learning approach by noting that
traversability is a complex function which depends on both vehicle properties and envi-
ronmental characteristics. The exact relation is difficult to characterize a priori by simple
static rules. Instead, Kim et al. propose to learn the accurate prediction of terrain traver-
sability properties from stereo images through a self-supervised, online learning method.
They employ a set of overlapping, egocentered local maps constructed at different times
and positions. In order to avoid registration errors due to GPS jumps or wheel slippage,
only the most recent local maps are considered, older maps are discarded.

Nontraversable training data

Traversable traming data Training data ~ Prediction Height map
(a) (b) Left: Original image, middle: Color-encoded

traversability based on learning, right: Color-
encoded traversability based on height maps

Figure 6.2: Overlapping local maps and traversability estimation (Source: [Kim 06b])

Every time a local map is generated, feature vectors encoding the textural appearance of
rectangular patches taken from the current stereo image are calculated using Laws Masks.
The vectors are back-projected onto the grid cells of the map and used as a cell label.
When the robot is traversing a previously labeled cell, the success or failure (detected by
bumper hits) of this traversal and the feature vector label is used as training data for the
classification module which assists the path planning unit.

During the evaluation by Kim et. al. , this approach turned out to be superior over height
based traversability estimation, especially when vegetation like tall grass is involved.

A probabilistic online learning framework for autonomous off-road robot navigation is
presented in [Erkan 07]. This approach predicts traversability in unknown environments
based on vision sensors only. Self-supervised near-to-far learning is applied to convey
traversability information from short range stereo-vision sensors to long range visual data.
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For feature extraction, a multi-layer convolution neural network (CNN) is trained offline.
Based on the derived features and the traversability information from short range analysis,
an online learning module learns terrain traversability for visual input spanning longer
ranges. This system is capable to adapt to any new, unseen terrain without human
intervention. Tests yield an overall classification accuracy of 85 %. However, the approach
assumes a single ground plane, which can restrict applicability of this method in uneven
or hilly terrain.

(a) Ground truth labeled image (b) LROD labeled image (c) Comparison of ground truth and LROD

LRQOD's first obstacle = Fake obstacle

-truth's first obstacle Missed obstacle
RO T Y N

Unknown Traversable Foot of obstacle

Figure 6.3: Terrain traversability learning in [Erkan 07]

A self-supervised learning algorithm for road detection in desert-like areas is shown in
[Dahlkamp 06]. In contrast to the example before, several LIDAR scanners and a monoc-
ular camera are utilized and the LIDAR data is the leading source of information. At
first, rigidly mounted laser scanners at the front provide data used to create a 2D binary
drivability map which is based on height differences. In this map, the largest area marked
as drivable is located and projected into the visual plane of the color camera.

Figure 6.4: Stanley, the vehicle used by [Dahlkamp 06]

This can be easily done since the position of the scanner and the camera with respect
to the vehicle is known. After removing unwanted information such as shadows and the
sky, the backprojected area in the visual plane is used to train a mixture of gaussian
color model of traversable surfaces. Afterwards, the remaining image pixels are classified
based on the learned model and drivable areas are detected. The major advantage of this
approach is that it can adapt to different appearances of the road, as long as the LIDAR
system is capable of detecting obstacles in the new terrain. A classification example for
this approach can be found in figure 6.5.

[Howard 06] addresses the problem of discriminating traversable from non-traversable veg-
etation on rough ground in stereo images. E.g. sand dunes can have a suitable geometrical
shape for traversal, but they include the risk of downhill slippage or sinkage. Their idea
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Figure 6.5: Near-to-far learning of a color based road model
Left the original image. The training area (blue lines) and the drivable area (light red) is marked in the
right image (Source: [Dahlkamp 06])

is to learn the association of sensor data such as provided by odometry, gyrometers, ac-
celerometers, inertial systems or bumper contacts with the appearance of the scene. They
term this method learning from proprioception (LfP). Similar to [Dahlkamp 06], the ad-
vantage of this approach is that the traversability decision is based on learning, so no
model of the physical behavior of the robot is necessary. But the generation of training
data, especially for unpassable situations, has turned out to be resource expensive since
intrafficability has to be experienced by the actual vehicle, resulting in emergency bumper
stops or other situations an operator has to intervene. Also localization and data regis-
tration problems were found to have an impact on learning at one place and using this
experience at another one.

Figure 6.6: Learning from proprioception (LfP)
The figure shows a sample image, a projection onto the local map and learned traversability predictions
(Source: [Howard 06])

B. Sofman et al. [Sofman 06] use overhead imagery data to improve autonomous robot
navigation. Such high quality images are widely available nowadays, due to the use of
satellites and remote sensing techniques. Both color (in HSV color space) and textural
features (extracted by Gabor filters) are used. The traversal costs over large areas are
predicted from overhead data by a self-supervised learning method utilizing a Bayesian
probabilistic framework. This leads to improved path planning with significantly shorter
paths. However, the drawback of this approach is the required overhead imagery data
which is not always available, especially when navigating autonomously in cross-country
outdoor environments. Entirely autonomous driving would require to store overhead im-
agery data of each possible location a priori or a persistent connection to a base station.

In [Sun 06], a mobile robot learns to drive similar to a human operator based on sample
data collected during a human-controlled example run. The presented approach learns
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Figure 6.7: Classification of overhead imagery [Sofman 06]
Red colors indicate impassable terrain, blue well traversable areas.

on two levels. On the perception level, color and textural features are extracted and
associated with traversability costs: low costs are assigned to those colors which were
passed by the human operator, other colors are more costly. Subsequently, a global map
with estimates of preferability and standard obstacle information is created from that and
can be used for path planning. On a behavioral level, mappings from visual features to
control actions are learned and used to tune the weighting of existing behavioral primitives
(such as ‘follow path’, ‘turn right’ etc.) based on the currently observed features. Real-
world tests show that the vehicle copies the human operator’s behavior in terms of safety
(e.g. distance to obstacles).

However, gathering training data with a human operator is time consuming and can even
be dangerous (e.g. in traffic as for ALVINN). Furthermore, this approach does not adapt
well to changing conditions without additional training.

Figure 6.8: Learned image classification [Sun 06]
Brighter colorized regions are preferred.

M. Shneier et al. [Shneier 06] [Shneier 08] use range sensors (stereo vision), color camera,
and the vehicle’s navigation system to predict terrain traversability for path planning.
The classification scheme is learned entirely without supervision, only from geometry and
appearance of the scene (known from stereo imagery). The terrain traversability is then
learned by building models of terrain regions using features including texture, color, and
traversability properties. The range measurements from stereo vision are used to assign
traversability measures to all regions. Again it is assumed that regions that look alike
have similar traversability properties. Thus, terrain appearance is associated with traver-
sability values. When all regions are classified, the path planner determines an optimal
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traversable path.

Figure 6.9:
Traversability classification based on texture and color features (Source: [Shneier 08])

The algorithms classification results were compared with ground truth created by a hu-
man observer in order to determine performance and error rate. The obstacle detection
algorithm agreed with the human’s classification 91 % of the time.

6.1.3 Selection of a Suitable Analysis Method

The survey of related work discussed above shows that appearance-based traversability
estimation typically relies on multiple features, out of which color and textural features
are most frequently used. Experimental results indicate that while color is a powerful cue
to discriminate between different terrain types, its reliability under changing illumination
conditions is critical and warrants the use of additional information. Texture, on the other
hand, appears to be more stable when exposed to similar disturbances. However, the
extraction of textural features can be a computationally expensive operation, especially
when high-quality measures such as multi scale gabor feature banks are used. Thus,
texture extraction methods need to be carefully selected in order to provide a viable
compromise between run time and feature quality.

Concerning the use of statically trained or online learning methods, most recently proposed
methods contain at least some learning component. It is apparent that the flexibility of
the a priori trained methods is too low, given the high variability of outdoor terrain.
Thus, many researchers propose some kind of near-to-far learning technique in order to
extrapolate knowledge that is obtained from reliable close-range sensors onto the available
long range equipment. Since the terrain appearance must also be evaluated by this sensor,
virtually all approaches use a (stereo) color camera system for this.

Motivated by this discussion, the following decisions have been made concerning the devel-
opment of the appearance-based terrain traversability method in the scope of this thesis:

1. Due to their complementary strengths and good previous results, both texture and
color features will be used for feature extraction. In order to allow later runtime
optimization, a powerful, yet computationally manageable textural feature is to be
selected.
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2. The terrain classification method shall be trained a priori with a set of hand labeled
images. However, this database is to be extended online in order to allow adaption to
new operational conditions, using a variant of near-to-far learning. More specifically,
the mechanisms used for cost learning of topological edges shall be reused for this
purpose: the spatial integration of behavior target ratings yields already interpreted
and well accessible locations for badly traversable terrain. Combined with positive
feedback from the areas which the robot has traversed, a balanced feedback loop
can be implemented.

The next section presents the developed approach and its constituent parts in detail.

6.2 A New Approach for Appearance-Based Traver-
sability Estimation

The appearance-based traversability estimation algorithm that has been developed in this
thesis proceeds in the sequence of steps shown in figure 6.10.

\

Color Image Acquisition

Color Images

| Feature Extraction |

)Image Features

Image Segmentation

Homogeneous Image Regions

| Terrain Classification |

—

Local Traver-
sability Map

Figure 6.10: Workflow of proposed method

Similar to the shape-based traversability analysis method presented in the last chapter,
the first step consists of acquiring color images of the surrounding terrain. For this,
the available high-resolution stereo camera system described in section 5.2.1 is used in
combination with the implemented custom exposure control. Then, texture and color
features are extracted from the obtained source images. Next, the image is segmented
into homogeneous regions using an unsupervised clustering method and a measure of
feature similarity. This step significantly reduces the number of classifications that need
to be performed later without impairing the classification accuracy. Also, the combination
of smaller image patches to larger regions improves the statistical stability of the extracted
image descriptors. Finally, the determined regions are classified into different traversability
classes using an a priori trained database. The online learning system is not shown in
figure 6.10 and will be introduced separately in section 6.4.
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In the following sections, the feature extraction, image segmentation and terrain classifi-
cation steps will be discussed.

6.2.1 Feature Extraction

In general, feature extraction describes the process of projecting high-dimensional data
(raw image data) onto a low dimensional subspace, where extracted features are usually
represented by a feature vector. Ideally, the chosen abstraction keeps the characteristical
information which is relevant for the task at hand and removes all other, misleading or
redundant data. If the method is appropriately chosen, the selected features provide a
simpler and computationally cheaper representation than the original image data. This
reduction is a crucial precondition for the successful application of classification methods.

Motivated by the discussion in the last section, three complementary operator types have
been selected to extract features with high relevance for terrain classification from the
captured input images. These are:

1. Textural Structure The first feature extractor is used to capture the textural
structure of the image. Since many relevant terrain types exhibit a distinct texture
(grass, bushes or trees, for example), texture can be used as a powerful clue to
discriminate them. Loosely speaking, the selected approach captures the spatial
structure of local brightness variations, e.g. distribution patterns of brighter or
dimmer pixels.

2. Brightness Variance The textural structure operator is invariant to the magnitude
of local contrast. However, this information is very useful to distinguish between
uniform image areas with low brightness variations (such as roads or sky) and areas
exhibiting larger variations, such as image tiles showing vegetation. In order to retain
the contrast information, a second feature extractor is included which is sensitive to
image brightness variance.

3. Color Distribution The third feature extractor considers the overall color distri-
bution which is ignored both by the texture and the contrast operators. As image
brightness is subject to large variations in outdoor environments, the most infor-
mative component of the color distribution is the hue or color tone distribution of
different image regions.

Despite the differences between the three extractors concerning the type of analyzed in-
formation, each extractor is applied to the input image using the same two-step process.
Figure 6.11 illustrates this procedure.

First, each feature extractor transforms the entire image into a feature image. Each pixel
of this feature image stores the result of applying the feature extraction with that pixel as
the center. Depending on the extractor, a variably sized area of the original image may
influence the extracted value, but each operator generates a single scalar as a result. Then,
at the choice of the image segmentation or classification steps, an arbitrarily sized region
of the feature images is selected. From this region, the scalar values extracted by each
feature extractors are collected into separate histograms, which are finally concatenated
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Figure 6.11: The two-step extraction process of a description vector

into a single description vector. This description vector characterizes the corresponding
image region in a compact fashion.

The following sections present the three used feature extractors and the mathematical
detail needed for their computation.

6.2.1.1 Textural Structure

Texture is a property of a surface describing its visual or tactile appearance. Visual
texture consists of many simple elements created by the reflection of light from a given
surface. These elements usually have some spatial relationship to each other, some kind
of order which can be structured or chaotic. Also, their sizes, colors, directions, etc. can
be similar or varying (both with monotonic or chaotic changes). These are characteristics
of textures, but no formal definition. In fact, there is no widely-accepted formal definition
yet.

Many efforts have been made to find a precise and complete definition for textures,
Tuceryan and Jain [Tuceryan 98] have compiled a list of some partial definitions. In
the scope of this thesis, texture is understood according to the description formulated by
J.K. Hawkins:

“The notion of texture appears to depend upon three ingredients: (i) some
local ‘order’ is repeated over a region which is large in comparison to the orders’
size, (ii) the order consists in the nonrandom arrangement of elementary parts,
and (iii) the parts are roughly uniform entities having approximately the same
dimensions everywhere within the textured region.”
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Figure 6.12: Three texture samples
From left to right, the images show grass, leaves and a tree top. To reduce the influence of lighting
variances, textures are usually analyzed in grayscale.

Categories of Existing Methods

In order to remain focused on the topic of appearance-based traversability estimation, an
in-depth description of existing approaches for texture analysis is omitted. Good surveys
on this topic can be found in [Singh 02] or [Tuceryan 98]. Instead, a brief overview of the
four main method categories for texture description methods is given.

Statistical methods use, as the name implies, statistical parameters to describe texture.
Spatial relations of gray-values are treated as local features and the statistics are extracted
from their distribution. These distributions are indeterministic under statistical texture
description. Examples are co-occurrence statistics, difference histograms, gray level differ-
ences [Ojala 01], and Laws’ texture energy measures. Statistical methods typically work
well for many natural textures which contain some randomized noise.

Structural methods assume the existence of basic texture primitives, often called ‘texels’
(texture elements) or ‘textons’. Texture on a macroscopic level is characterized using such
texture primitives plus design rules that guide their spatial organization. Texture primi-
tives are usually extracted by edge detection, mathematical morphology, and generalized
co-occurrence matrices. Structural methods work best with man-made textures having a
clear construction scheme. However, natural textures are rarely well represented by this
model, which is a drawback for structural methods in outdoor applications.

A model-based method uses stochastical processes or other analytical models to describe
texture. A parametric generative model is compiled that could have created the inten-
sity distribution the texture consists of. Pixel-based and region-based methods exist.
Examples for model-based methods are random field models, autoregressive, and moving-
average.

Finally, signal processing or filter methods interpret the textured image as a two dimen-
sional signal and submit it to a bank of filters. The filter response is used to describe the
texture. Thus, the frequency content of the image is analyzed by describing the global
periodicity of gray-levels in the spectrum. Spatial domain filters include Laws’ masks, lo-
cal linear transforms, Fourier transform, wavelet transforms, Gabor filter banks, discrete
cosine transform, eigenfilters, and finite impulse response filters [Ojala 01]. A great deal
of filter methods was tested and compared in [Randen 99].
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Selected Approach

After considering the available techniques for textural feature extraction, the local binary
pattern approach has been selected due to its high discriminative power and higher speed
compared to other extraction methods with similar strength such as gabor filter banks
[Méaenpéa 03].

Local Binary Patterns (LBPs) were first mentioned in [Harwood 95] and introduced to
the public by T. Ojala et al. in [Ojala 96]. Loosely speaking, the LBP value of a pixel
captures the structure of local brightness variations around it. Algorithmically, the value
is computed by sampling circularly around the selected pixel and setting 1-bits in the
LBP value for each sample that is brighter than the center (See figure 6.13 for an example
using 8 samples).

Neighbor darker than Center
Neighbor brighter than Center

+ + 4+ + + + +
—_— O OO = =D =
[a—

= 141
Figure 6.13: A local binary pattern with 8 samples and radius 1

Let I(z,y) be defined as the intensity of the source image pixel centered at position (z,y).
If the (x,y) coordinates do not address a pixel center exactly, the value of I(x,y) is
interpolated linearly from the intensities of the four closest pixels. Furthermore, let the
intensity value of the center pixel be denoted with g. and the intensities of the P samples
around g, (distributed circularly with radius R) be named g; (see figure 6.14).

g

6

Figure 6.14: LBP computation (adapted from [Ojala 02b])
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Based on these notational conventions, the sampling process can be formally described by

equation 6.1.
2mi 2mi
:I<x+Rcos <§>,y+RSin (%) ) (6.1)

With the standard signum function, defined as

1 >0
sgn(z) = {O <0’ (6.2)

the return value of a LBP operator with P samples and radius R is defined by [Maenpai 03]:

LBPpr(z,y) ngn —I(x,y)) - 2 (6.3)

The resulting scalar lies between 0 and 27 — 1.

As can be seen from the formulas, the LBP code of a pixel is not affected by changes in
mean luminance or any monotonous scaling of image intensity, such as changes in contrast
etc. [Ojala 01]. This lets local binary patterns remain relatively unaffected by illumination
changes. Thus, they are well suited for outdoor applications [Méenpaa 05].

LBP codes describe the structure of a pixel’s local neighborhood in a compact and efficient
form. Thus, single LBP features can be seen as equivalent to the textons postulated by
a structural texture analysis method. In fact, a local binary pattern is able to represent
a variety of characteristical local structures, such as flat areas, spots, edges or edge ends
(figure 6.15). Each of these patterns is assigned a unique value in the feature image.

dopacach

Spot Line end Edge Corner

Figure 6.15: Some
texture primitives representable by local binary patterns (adapted from [Mienpéi 05])

It is interesting to observe that the computation of the description vector for a given area
builds a histogram of the LBP values located inside this area. In essence, this histogram is
a statistical view of the structural setup of that region, embodied by the single LBP values.
Thus, feature extraction based on LBP patterns can be seen as an unifying approach which
exhibits characteristics of both the statistical and the structural methodologies presented
earlier. In the view of the authors of the LBP technique, this fact supports the claim that
local binary patterns are appropriate to characterize a wide variety of texture types and
are more discriminative than approaches which fall only into one category [Méaenpéd 03].
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The original local binary pattern approach has undergone several modifications and ex-
tensions over time [Méaenpéi 03], which offer significant increases in discrimination power.
The ‘multi-scale’ and ‘uniform’ extensions presented next have proven themselves to be
especially useful and are thus used by the terrain analysis algorithm.

The Multiscale LBP Extension

As pointed out by the definitions at the beginning of section 6.2.1.1, textural appearance
is always linked to a specific scale of observation. When analyzed on a different scale,
the texture properties of an image area may change dramatically. The texture of grass
is a good example for this effect. While appearing uniform from a large distance, grass
exhibits a pronounced vertical orientation if the analysis scale is reduced.

In order to improve the standard LBP and allow it to capture textural information on
multiple levels of resolution, the approach has been modified by [Ojala 02b] to sample on
multiple circles with different radii. For each circle, a separate LBP code is computed.
During histogram construction, these codes are collected into separate histograms, which
are then concatenated to form one large feature vector as the final result. Of course, this
technique does not model pattern relations between sample rings. However, experiments
have shown that this has little detrimental effect on texture discrimination, while it reduces
the size required for the final histogram exponentially.

However, care has to be taken when sampling the source image using a radius > 1. With
growing radii, the sampling points become sparsely distributed. Taking point samples at
these locations does not accurately model the structure of the surrounding image area on
the correct scale — the point sample can randomly hit or miss characteristic structural
feature of the texture, causing instability in the obtained patterns (figure 6.16a).

(a) Point sampling at (b) Sampling with
larger radii yields unstable LBP patterns enlarged sampling areas avoids aliasing

Figure 6.16: Larger sampling radii for multiscale analysis

To avoid this, the sampled area has to be increased over the four pixels used for linear
interpolation. The idea is to expand the sampling area to circles which cover the sampled



180 6. Appearance-Based Terrain Traversability Estimation

image as tightly as possible (see figure 6.16b). While this method improves the LBP
pattern’s stability as desired, it increases the execution time due to the additional value
summation for each sample. Fortunately, the same result can be achieved by applying
the original operators on multiple versions of the input image, blurred by Gaussian filter
operators with different strengths (figure 6.17).

(a) The inner ring of the multiscale LBP (b) The samples for the outer ring are
is sampled on a slightly blurred image obtained from a strongly blurred image

Figure 6.17: Blurred input images for multiscale analysis

The effective radius of the blur filters must be chosen in accordance with the LBP operator
radius and the number of its samples to ensure that the sampled regions cover most of
the image without overlapping each other (see figure 6.18). The blurring kernel sizes can
be calculated from the innermost radius R; and the amount of samples per ring P,,. The
other radii and the sizes of the blurring kernels depend on the choice of the first radius.
The calculation of the blurring kernel size is done as follows [Maenpad 03]:.

I3

Figure 6.18: Effective areas for LBP with three scales: areas of influence
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The discrete sizes in pixels of the blurring kernel mask can be computed by
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The notation for multiscale LBP operators is a straightforward extension of the nomencla-
ture used already. The operator name LBPp, yp,,p, r, specifies a multiscale LBP operator
with three sampling rings having P;, P, and P3; samples and the innermost radius of R;.

The Uniform Pattern LBP Extension

It has been observed by [Méaenpii 03] that certain LBP codes are extracted much more
frequently than others. The corresponding intensity patterns seem to be fundamental
building blocks of local image texture. Interestingly, these codes are characterized by
having at most two transitions from one to zero or from zero to one in the circular binary
code (figure 6.19). The corresponding patterns have been termed uniform patterns.
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Figure 6.19: Examples for uniform and non-uniform LBP (from [Méenpii 05])
U is the number of transitions from one to zero or vice versa in the binary patterns.

The unequal distribution of LBP patterns can be exploited to significantly reduce the
number of codes that a LBP operator can produce without loosing much information. For
this, a mapping is constructed which takes the 27 possible output codes of an LBPp g
operator and maps each code that corresponds to an uniform pattern to an unique value
0...n. Any other (non-uniform) code is mapped to the value n+ 1. It can be shown that
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with P samples, P(P — 1) + 2 uniform patterns exist and thus n = P(P — 1) + 2. With
this mapping function, the output codes of the LBPg; operator shown in figure 6.13 are
reduced from initially 2% = 256 distinct LBP codes to only 8(8 — 1) + 2+ 1 = 59 different
result values.

The benefit of this mapping is a vast reduction of the histogram size needed in the second
step of the feature extraction process. On the one hand, the resulting description vector
requires less storage and subsequent similarity comparisons become a lot faster. A second,
maybe even more important advantage of using uniform LBP operators is the fact that
the evaluation of small image regions (with about 16x16 pixels or less) results in only
sparsely filled histograms when using the normal operator. Sparse histograms tend to
be unstable when compared to each other. By reducing the bin count, this problem is
reduced dramatically.

To verify that not too much information is lost when using the uniform pattern mapping
on real-world images, the occurring LBP-patterns and their coverage by uniform patterns
was examined on several sample images, using both a standard and a multiscale LBP
variant. The results are shown in table 6.1.

Operator Images Recorded by Uniform patterns
LBPg 10 9 (set A)  robot stereo system 90.5%

52 (set B) SLR camera 87.8%
LBPgis+1610 9 (set A)  robot stereo system 85.7%

52 (set B) SLR camera 78.9%

Table 6.1: Experimental determination of uniform pattern coverage

On average, the retained uniform patterns accounted for more than 80% of all extracted
patterns. At the same time, the bin count was reduced by 76% for the single scale
operator and an overwhelming 99.4% for the multiscale LBP. Thus, the usage of uniform
LBP operators is a very appropriate means to decrease the final feature vector size. For
multiscale LBPs, it can even be seen as a vital precondition in order to obtain usable
feature vectors with any significance on reasonably sized image areas. After all, filling a
28 4 28 4 216 — 66048 bin histogram with 642 = 4096 values from a 64 x 64 pixel region
does not yield any useful feature vector. Using only 59 + 59 + 243 = 361 bins in total, a
much more manageable feature set is obtained.

Exact Operator Specification

Since the LBP operator and its extensions can be tuned in many different ways, some
thought has to be invested into the exact operator configuration used in the terrain clas-
sification system. The final decision has been guided by several preliminary experiments
as well as published results. Both results from applications of the LBP technique on
benchmark databases [Ojala 02a] [Maenpéi 03] [Pietikdinen 04] or real applications like
image retrieval [Takala 05], quality inspection [Maenpad 05] or facial expression recogni-
tion [Feng 05] have been considered.

In the experiments, the multiscale LBP operator consistently yielded better results than
the single scale LBP. Also, the uniform pattern extension has been validated as a highly
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useful means to reduce computational complexity and stability of the multiscale technique.
Due to these advantages, both extensions are selected for the final operator. Furthermore,
the best results in our experiments have been obtained using three sampling rings with 8,
8 and 16 samples and a starting radius of 1.3. This layout has additional computational
benefits, since the results can be stored compactly into a single feature image with 32 bits
per pixel. Figure 6.20 shows a schematic view of the image areas that contribute to each
sample taken by this LBPgg161.3 operator.

LBP8+8+16,1.3

Source Image

Feature Image

Feature Vector with 361 Bins

Figure 6.20: The final LBP operator used for textural feature extraction

In accordance with the uniform mapping extension, the LBPgg.161.3 operator produces
59 different values for the first two sample rings with 8 samples and 243 distinct codes
for the largest ring with 16 samples. After building separate histograms for each ring
and concatenation of the results, a 361-dimensional feature vector is produced for each
specified image region. As a final note, in order to reduce the impact of robot rotation on
the extracted texture features, the estimated roll angle of the CCS compared to the WCS
is used to rotate the operator’s sampling positions accordingly.

6.2.1.2 Brightness Variance

Since the LBP operator only evaluates the signs of the brightness differences between two
sampled areas and discards their actual magnitudes, it does not capture any information
about the local contrast distribution of the image. However, this information can be
very useful to distinguish between uniform image patches with low brightness variations
(such as roads or sky) and areas exhibiting larger variations, such as image tiles showing
vegetation.

In order to retain the contrast information, a second feature extractor is applied to the in-
put image, which has been developed to quantify local brightness variance [Maenpéi 03].
The VARp g operator uses the same sampling strategy as the LBP operator introduced
earlier. However, the operator result depends upon the squared sum of brightness differ-
ences between the average brightness of all samples and each single sample intensity.
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More precisely, the VARp g value of a pixel is calculated from the intensity values g; (i =
0,...,P —1) of P samples drawn, re-using the sampling setup introduced in figure 6.14.
From these samples, a variance estimate is derived:

b

P-1

1
(9: — p)*, where i = 2 > i (6.8)
i=0

1

VARRR — F

Il
=)

The result describes the local image contrast in a circular neighborhood around the center
pixel. It is both invariant against image rotation and linear brightness changes. By
applying the operator to all source image pixels, a feature image can be computed as for
the textural structure operator. However, the image must store a floating-point value per
pixel, since equation 6.8 returns real numbers.

Figure 6.21 shows a visualization of such a feature image.

(a) Source image (b) VAR feature image

Figure 6.21: Feature extraction using the VAR operator

The fact that the results of the variance operator are real numbers forces the introduction
of an additional quantization step before histogramming of image areas can take place.
During quantization, operator values that lie within a certain value range are mapped to
discrete values 1...n. Although a monotonous mapping is not strictly required, it is used
in practice due to its intuitivity.

The number of quantization levels n is a free parameter of the VAR operator and can
be chosen according to external requirements. If n is fixed, a monotonous mapping still
leaves the question how to choose the size of each quantization range. Experience shows
that if all ranges were made equally broad, the resulting histogram would become very
unbalanced: some bins would be very full and others very empty. This would reduce the
information content and usability of the produced feature vector.

In order to obtain a more balanced histogram, [Méenpiid 03] proposes to adjust the quanti-
zation ranges according to the distribution of VAR values in some typical training images.
The used technique is reminiscent of the well known histogram equalization method. In
essence, the ranges are calculated as follows. First, the VAR operator is used to transform
all training images into feature images. Then, all VAR values are stored in a linear array
and sorted according to their magnitudes. The total number of VAR values N divided
by the number of desired quantization levels n yields the desired bin count for a balanced



6.2. A New Approach for Appearance-Based Traversability Estimation 185

histogram: b = N/n. Using the sorted array, the quantization borders are now simply
determined by each b-th array entry. After training, the determined quantization ranges
are saved to a file and can be reloaded upon system start.

Exact Operator Specification

The VAR operator can be extended for multiscale analysis just as the LBP operator and is
adjustable using the three parameters R, P and n. Again, some preliminary experiments
have been conducted to determine good settings for these.

In contrast to the textural structure operator, the analysis of multiple scales did not
provide a large benefit. Also, the variation of sample numbers or quantization levels
within reasonable limits had no pronounced effects on performance. However, a sample
radius of &~ 2 showed some advantage over smaller radii. Due to these observations, the
VARg 2o operator with n = 256 quantization levels has been chosen to serve as feature
extractor for image brightness variance.

6.2.1.3 Color Distribution

The third feature extractor deals with the overall color distribution of image patches. Up
to now, this part of information is ignored both by the texture and the contrast operators.
As image brightness is subject to large variations in outdoor environments, the most
informative component of the color distribution is the hue or color tone of the image tile.
In order to gather this information into a single channel, the input image is converted into
the HSV (Hue, Saturation, Value) color space before the actual feature extraction starts.

In this color space, the hue channel specifies the dominant spectral component of the
pixel color. This value is usually represented in a circle, where each angle corresponds
to a pure color. Saturation is the degree to which that color is undiluted, i.e. a measure
of how much white is added to it. The value channel quantifies the overall brightness of
the image pixel. Together, the three components create a cylindrical color space which is
often represented as an inverted cone (see figure 6.22).

Figure 6.22: The HSV color space
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The conversion from the RGB color space (with 0 < R, G, B < 255) to HSV is realized
with the following formulas:!

V = max(R,G, B)

g _ (V —min(R, G, B))-255/V ifV #£0
o ifV =0
(G — B)-60/S ifV =R
H = {180+ (B—R)-60/S ifV =@

240 + (R—G)-60/S if V=B
H = H+360,if H<0

Figure 6.23 shows an illustration of the content stored by each of the three HSV channels.

(a) Original image (b) Hue channel (c) Saturation channel (d) Value channel

Figure 6.23: HSV color channels

After conversion, the feature image of the color feature extractor is computed. For this,
three quantization parameters Ly, Lg and Ly are used. Each parameter determines the
number of value ranges that will be distinguished for the H, S and V channel in the feature
vector. Then, the color value (H,S, V') of each source pixel is first normalized to ranges
between [0...1[ and then transformed into a discrete value F' by computing

F=[V-Lv]+[S-Ls]-Ly+|H-Ly]-Ls- Ly (6.9)

. |z] signifies the standard mathematic floor function.

By choosing Lg, Ly relatively low and Ly much higher, more importance can be given
to hue than to the saturation or value components of a pixel color. With these settings,
variations in illumination have only a small impact on the extractors result value, while
even small changes in hue are represented in the feature vector. This technique can be
used to tune the color operator and make it more robust especially in outdoor applications.

Exact Operator Specification

Again, the parameter selection for the color distribution operator has been guided by some
preliminary experiments. At the end, the operator with Ly = 18, Lg = 3 and Ly = 3
has been identified as the best compromise between discriminative power and sensitivity
to illumination changes. As can be seen in equation 6.9, the resultant feature vector has
a dimension of 18 -3 -3 = 162, which is comparable with the other two feature extractors.

!These formulas have been taken from the OpenCV API, see http://www.cs.indiana.edu/cgi-pub/
oleykin/website/OpenCVHelp/.
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6.2.2 Image Segmentation

The feature extraction stage presented in the last section allows to obtain a description
vector for arbitrary image regions, characterizing the area’s texture, contrast and color
in a compact fashion. This capability could be used directly for terrain traversability
estimation by training a suitable classifier and applying it to a regular grid of image
patches such as shown in figure 6.24.
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(a) Original image (b) Image patches to be classified

Figure 6.24: Direct terrain classification

However, such a rigid segmentation scheme would have to create rather small regions in
order to adequately capture variations in terrain traversability. This in turn would lead to
a large number of patches and thus many time-consuming classifications. Also, it would
reduce the stability of the feature histograms used as description vector. Small appearance
differences in an image patch would result in large relative changes of the corresponding
description vector. As a consequence, the traversability classification step would become
more difficult and error prone.

In order to circumvent these problems, a more intelligent strategy is required to divide
the source image into fewer and larger regions wherever possible. Ojala et. al. showed
in [Ojala 99] that a split-and-merge segmentation can be used successfully to achieve this
goal in a computationally efficient way. While the original technique has been proposed
for unsupervised image segmentation, it has been adopted in the context of this thesis as
a preparational step that precedes image classification.

In short, the algorithm proceeds in two distinct steps, termed split and merge. Splitting
recursively subdivides the source image into quadratic tiles that are homogeneous with re-
spect to their description vector, i.e. if the tile was split up further, the description vectors
of the smaller tiles would all be very similar to each other. Once splitting has terminated,
many homogeneous quadratic tiles of different sizes exist (see figure 6.25a). Now, adjacent
regions are iteratively merged as long as their description vectors are similar enough. As
a final result, arbitrarily shaped regions which share similar description vectors are pro-
duced (see 6.25b). Compared to other segmentation techniques, split and merge increases
the processing speed while maintaining small memory requirements [Horowitz 76].

Both the region splitting and merging stages rely on a measure that quantifies the similar-
ity of two description vectors. A suitable metric for this is presented next in section 6.2.2.1.



188 6. Appearance-Based Terrain Traversability Estimation

(a) After splitting (b) After merging

Figure 6.25: Identification of homogeneous image regions using Split & Merge

After this, some details on the efficient implementation of the splitting and merging steps
introduced above are given.

6.2.2.1 A Similarity Measure for Description Vectors

Since the description vector of an image region is constructed by concatenating feature
histograms, histogram comparison metrics are natural candidates for a good similarity
measure. [Rubner 01] published an excellent review and experimental comparison of the
most prominent metrics. The reviewed candidates are well known standard metrics such
as histogram intersection and the Farth Movers Distance, heuristic measures including
the Minkowski-form and Weighted-Mean-Variance, divergence measures stemming from
information-theory such as the Kullback-Leibler or Jenson-Shannon divergences and fi-
nally nonparametric test statistics like x? (Chi Square) and the Kolmogorov-Smirnov
distance. However, not all of these metrics are suitable for the comparison of description
vectors due to the lack of any consistent relation between adjacent descriptor bins. Among
others, this prohibits the application of the Earth Movers Distance or the Weighted-Mean-
Variance metric.

The authors of the local binary pattern approach advocate the use of the Kullback-Leibler
divergence as a similarity pseudo-metric for the tasks of texture classification. Given two
description vectors P, @ of length n, the Kullback-Leibler Divergence KL(P, @) is defined
as

P(i)
Q(i)
KL quantifies the relative entropy of a discrete sample distribution with probability func-

tion P with respect to a second discrete model distribution with probability function Q).
The higher this entropy, the less similar the two distributions are.

KL(P,Q) = Z P(i) - log (6.10)

However, the KL measure has several drawbacks. First, it is not bounded and approaches
neg. infinity for P(i) — 0. Second, it is not symmetrical, so that the order of P and
() are important - however, this has no reasonable interpretation in the context of image
segmentation.
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The Jenson-Shannon Divergence (JD) overcomes the symmetry disadvantage. It is based
on KL but uses the arithmetic middle for each of the compared distributions:

Yrro 1)

JD(P, Q)__KL(P M)—F;KL(Q M) where M:2

It can easily be shown that JD(P, Q) = 0 if and only if P = Q. In all other cases, JD(P, Q)
becomes larger the less similar the description vectors P and () are.

In order to avoid the unboundedness of the KL measure, Ojala proposed in [Ojala 96] to
set the bin count to 1 for any bins P(i), Q(¢) that contain 0 initially. This heuristics is also
applicable to JD. The modified Jenson-Shannon Divergence measure is both numerically
stable and symmetrical. Also, its efficiency as a metric for unsupervised image segmen-
tation has been documented in [Rubner 01]. Due to these benefits, it has been chosen as
the similarity measure for description vectors in this thesis. As a side note, an interesting
other similarity measure has been researched as well. However, it is excluded in this pre-
sentation because it is not used in the final appearance based estimation method. Details
concerning the other measure can be found in [Rauber 08].

Furthermore, to avoid skewing the similarity measure when description vectors stemming
from regions with different sizes are compared, a normalization of the description vectors
P and Q is performed before any JD measure is computed. This normalization ensures
that the sum of all values in each description vector equals one.

6.2.2.2 Region Splitting

The purpose of the splitting stage is to subdivide the input image into smaller regions as
long as these regions are heterogeneous, e.g. composed of inner regions with dissimilar
description vectors. Once no heterogeneous regions remain, any further subdivisions would
only generate regions with very similar description vectors. From the perspective of later
terrain classification, these additional regions would fall into the same class and offer no
new information. Thus, their creation can be safely omitted to save computational effort.

Splitting is implemented as a recursive procedure, starting with the whole image as one
single region. All image regions are recursively subdivided into four quadrants with halved
widths and heights if the JD similarity measure between any of the newly created four
quads A, B, C, D exceeds a predetermined threshold. The threshold is checked against
the maximal dissimilarity between all 6 possible quad pairs as shown in algorithm 11.

Algorithm 11: Recursive splitting

procedure Split(Quad Q)

1: Construct four Quads A, B, C, D from Q with halved width and height
Compute description vectors for A, B, C, D
maz_dist = max( JD(AB), JD(A,C), JD(A,D), JD(B,C), JD(B,D), JD(C,D) )
if max_dist > split_threshold then

Split(A); Split(B); Split(C); Split(D)
else

Discard A,B,C,D
end if
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Figure 6.26 shows a schematic drawing of the regions created by the splitting approach.
Each image region is divided further until the remaining area is homogeneous (e.g. has
the same color).

i I
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(a) Input image (b) Depth 1 (c) Depth 2 (d) Depth 3 (e) Final result

Figure 6.26: Regions created through recursive splitting

In the developed implementation, a quadtree is used to store and manage the created re-
gions. For the splitting threshold, a conservative setting has been determined empirically.
With this setting, the image is typically oversegmented - however, this can be corrected
both by the subsequent merging step and the later classification stage. If the threshold
was chosen too insensitive instead, too few regions would be constructed. This could not
be corrected at a later stage.

6.2.2.3 Region Merging

Once the splitting stage has concluded, adjacent regions with high similarity are merged
together until a termination criterion (see below) is met. This step breaks the quadtree
structure and allows to form regions with arbitrary shapes.

In contrast to many other implementations of split and merge algorithms which per-
form local region growing, the merging strategy used in this thesis always fuses the two
neighboring regions with the globally highest similarity [Ojala 99]. This approach is com-
putationally more expensive than local clustering, but it removes the necessity to select
seed regions from where merging starts. This is highly desirable for unsupervised and
repeatable operation of the image segmentation stage.

However, the merging algorithm needs to know the JD similarity measures of all pairs of
neighboring regions in order to select the one with the lowest description vector divergence.
To compute all of these distances in each step of the merging stage would be prohibitively
expensive. Therefore, a more efficient algorithm has been developed in the scope of this
thesis. It uses a cache of all region pair similarity measures. Once a region pair has been
merged, only the cache of regions which lie adjacent to either one of the merged couple
needs to be updated [Faust 08].

The cache is implemented as a so called neighborhood list. Each element of this list stores
pointers to two neighboring regions and the corresponding divergence measure. Initially, it
is constructed from the quadtree that results from the split stage. By exploiting its regular
spatial layout, it is relatively easy to determine whether two quads are neighbors using
tesseral arithmetics [Faust 08]. If they are, the pair is inserted into the neighborhood list
along with their similarity value. During the merge stage, the neighborhood list is sorted
according to region similarity. Then, the pair of regions (N,M) with lowest divergence
is merged into a new region R. Now, all entries in the neighborhood list which contain
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pointers to either N or M need to be reevaluated. For one, the old region pointers need
to be replaced with a pointer to R. For another, the similarity values must be updated.

In order to perform this similarity value update, the description vector of the region
R must be determined first. Since description vectors are actually histograms of single
features, the vectors of N and M can be simply added.

In order to quickly retrieve all list elements which point to N or M, the neighborhood
list elements are augmented with two additional threading pointers, one for each of
the two region pointers. The threading pointer of N leads to another list element which
contains N and is guaranteed to loop around only after all list elements with N have been
traversed. The same holds for the threading pointer of M. Using this threading, all list
elements which need to be updated can be accessed in linear time without needing to
recompute neighborhood relations between arbitrarily shaped regions.

()
Figure 6.27: Update of the neighborhood list threading after region merging

Whenever regions are merged, the threading needs to be updated as well as the similarity
measures. Figure 6.27 illustrates this updating process. Here, regions R1 and R4 are
about to be merged (figure 6.27a). To update the existing threading (figure 6.27b), the
elements in R4’s threading list are successively moved into the list of R1 (figure 6.27c -
6.27¢). During the move, all pointers to R4 are replaced by pointers to R1. If this results
in a duplicated region pair such as with (R2, R4), the element containing the duplicate
is removed completely from the neighborhood list and the threading (figure 6.27¢). Now,
the merging step can be reiterated. Merging stops if the ratio between the JD divergence
of the current merge pair and the divergence of the last pair exceeds a second threshold.
See [Ojala 99] for a justification of this technique. In essence, it allows to formulate a
more general threshold that is less dependent on the actual image content.

Figure 6.28 shows the typical results obtained by the presented unsupervised split and
merge image segmentation when applied to a real input image. As parameters, a splitting
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threshold of 1500, a merging threshold ratio of 1.1 and a minimal quad size of 8x8 pixels
has been used. Out of the 1600 -1200/(8-8) = 30000 possible image patches, the splitting
shown in figure 6.28b contained 721 patches. The subsequent merging stage grouped these
patches into 26 regions.

CEmarE

(c) Regions after merge stage (d) Four prominent, homogeneous regions

Figure 6.28: Split & Merge image segmentation in practice

As can be seen in figure 6.28c, the regions that remain after the conclusion of the merging
stage are still somewhat oversegmenting the source image. However, the formed regions
(four examples are shown in figure 6.28d) are relatively homogeneous in terms of ap-
pearance. Thus, the segmentation has fulfilled its job as a preparational step for terrain
classification: For one, it has significantly reduced the number of region classifications
(from 30000 down to 26!) that need to be performed. For another, it has produced larger,
homogeneous regions with more stable description vectors.

6.2.3 Terrain Classification

The last major step that remains to be performed by the appearance-based terrain tra-
versability estimation algorithm is to map the description vectors of the segmented image
regions onto traversability scores usable for path planning. In order to reduce the com-
plexity of this mapping task and simplify the experimental validation of the developed
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approach, only binary traversability scores are considered. With this simplification, each
image regions now only needs to be classified into either traversable (traversability score
0) or into impassable (traversability score 1) terrain.

Classification tasks such as this have been studied extensively and many machine learning
approaches have been proposed. The following three sections present the deliberations
that led to the selection of a suitable classification algorithm, its supervised training with
‘eround-truth’ images labeled by a human expert and the subsequent application of the
resulting classifier for unknown region descriptors.

6.2.3.1 Classifier Selection

In order to select the classification algorithm that is most suitable for the task at hand,
one can draw upon many existing surveys and publications that characterize the inherent
benefits and drawbacks of different approaches.

For instance, Liu et. al. [Liu 05] distinguish two broad categories of classification algo-
rithms. First, there are statistical classifiers, which try to infer characteristical features
for the members of each class from the labeled training samples. This class can be fur-
ther subdivided into parametric and nonparametric classifiers. Nonparametric classifiers
such as the Parzen window method and k-nearest neighbor (k-NN) make no assumptions
about the distribution of the class samples in the feature space. However, this indepen-
dence comes at a price, as usually all training data needs to be stored and used to classify
an unknown sample.

Parametric statistical classifiers on the other hand make certain assumptions about the
distribution of features in the feature space. Examples are Bayesian learning and Maha-
lanobis classifiers. However, they allow to compress the learned information based on the
assumed feature distribution and avoid storing the entire training set.

While statistical classifiers define a certain class based on features that are shared by
all members, discriminative classifiers also exploit features that differentiate distinct
classes. A prominent representative is the support vector machine, a binary classifier that
separates classes in feature vector space by maximizing the geometric margin between
them. Another group of prominent classification techniques are artificial neural networks.

The characteristics of both classifier types differ substantially. For example, adding sam-
ples typically requires complete retraining with all samples for discriminative classifiers.
In contrast, some statistical classifiers such as k-NN allow to add further samples without
retraining. If extensive training sets are available, discriminative methods normally ex-
hibit higher classification accuracy. However, some statistical methods can lead to better
results for small sample sizes. Discriminative methods are generally more susceptible to
outliers, while at least parametric statistical classifiers are rather resistant to them.

Table 6.2 summarizes these differences very coarsely.

Given the classifier properties in table 6.2, several arguments favor the use of a nonpara-
metric statistical classifier for the envisioned task. For one, the fact that only 10 — 30
regions are segmented from each training image indicates that only relatively few (in the
range of 100 — 500) samples will be available for training. Also, some classifiers of this
type allow to easily add more samples online using a self-supervised learning technique
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Classifier Type Statistical Discriminative
Training time complexity linear square
Time needed for Classification higher lower
Adding samples on-the-fly possible for some not possible
Accuracy with large training set not so good better

Accuracy with small training set
Handling complexity
Outliers

better for some
more parameters
parametric: resistant

worse generalization
fewer parameters
susceptible

nonparametric: susceptible

Table 6.2: Classifier characteristics (deduced from [Liu 05])

(see section 6.4). Finally, it is not handicapped by the fact that the distribution of class
members in feature space is hard to guess for the given description vectors.

Due to these benefits, the very popular nonparametric, statistical k-nearest neighbor
classifier has been selected for terrain classification. On top of the already mentioned
benefits, k-NN is also robust against noisy training data which has to be expected in
outdoor environments.

6.2.3.2 k-Nearest Neighbor Classification

The k-nearest neighbor classifier is based on the straightforward idea that samples with
similar feature vectors belong to the same class. A sample with an unknown feature vector
is thus classified based on the k known training samples with the most similar (‘closest’
given the used similarity metric) feature vectors. Normally, the k class labels of these
samples are retrieved and a majority vote serves as classification result for the test sample
(see figure 6.29). Common implementations of k-NN classifiers are based on a database
that stores all training samples together with their assigned class labels. For some distance
metrics, efficient data structures can speed up the retrieval of the test sample’s nearest
neighbors from the database.

Figure 6.29: Classification with k-Nearest Neighbor
The red sample in the middle is the test sample to classify. Using majority voting, it is assigned to the
triangle class for K = 3 and to the rectangle class for k = 5.

The choice of the parameter k is important. Larger values for k£ reduce the effect of noisy
feature vectors or outliers. Smaller k lead to more adaptive estimates especially with small
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training sets, but the danger of over-fitting and susceptibility to outliers is higher. The
best choice is data-dependant and can be determined empirically or by techniques such
as cross-validation. During preliminary testing using a set of representative input images,
setting £ = 5 has been determined as a good choice and is therefore used subsequently.

The training process of a k-NN classifier is trivial. Given a new training sample, it
suffices to store the sample’s feature vector together with its class label into the classifier’s
database. A consequence of the lack of abstraction during training is that k-NN classifiers
suffer from quite high computational costs during the classification phase. For each query,
the distance between the new sample and all stored samples has to be computed. However,
because the number of training samples is expected to remain small, this drawback has
been deemed acceptable.

Using a Classifier Ensemble instead of a Single Classifier

Several researchers have observed that classification based on multiple extracted features
(such as in the present case) can be improved by combining the output of an ensemble of
classifiers, each trained on just one extracted feature type, instead of training one single
classifier on the concatenated feature vectors [Kittler 98]. Possible reasons for this are
that classifiers which are responsible for just one type of features can adjust themselves
better to the characteristics of that specific feature.

As this line of argumentation appears reasonable, the ensemble approach has been adopted
for the terrain classification task at hand. Thus, 3 k-NN classifiers C7, Cy, C5 are used in
the following, one to classify the LBP textural features, one to classify the VAR contrast
features and the third one to determine the terrain class based on the color features.
Details on how the outputs of the classifiers are combined are given in section 6.2.3.4.

6.2.3.3 Classifier Training

The three k-NN classifiers are initially trained using supervised training based on example
images. For each image, traversable and untraversable regions are marked by a human
expert in order to provide the required class labels. In practice, a colored mask image
is drawn for each training image such as shown in figure 6.30b.

(a) Sample image (b) Mask image (¢) Mask overlay

Figure 6.30: A sample image overlaid with its class labels
Red color is used to mark untraversable image regions, green marks traversable areas.

During training, all available sample images and the corresponding mask images are
loaded. Each sample image is segmented using the presented split and merge algorithm.
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For each of the formed regions, the color of the mask image is checked within the occupied
area. If more than 75% of the region’s area is marked either traversable or untraversable,
the region is deemed valid and the label corresponding to the dominant color is retrieved.
Otherwise, the region covers both traversable and untraversable areas, maybe due to in-
appropriate segmentation or insufficient discriminative power of the extracted features.
In any case, such ambiguous regions do not constitute good training samples and are dis-
carded. For all valid regions, the description vector is retrieved and split into the feature
vectors created by the textural structure, contrast and color feature extractors. Each
feature vector is then associated with the true class label and added to the corresponding
k-NN classifier as a new training sample.

6.2.3.4 Classification

In order to identify traversable and non-traversable regions in a new image during robot
operation, the feature extraction and image segmentation procedures are performed on
it as described in the previous sections. Then, for each segmented image region I, the
description vector D(I) is retrieved and split into the three feature vectors D;([), Do(I)
and D3(I) of the textural structure, contrast and color feature extractors. After this,
the three k-NN Classifiers C; are queried with the corresponding feature vector D;(I).
Each classifier produces a list of results R;, which contains k pairs of class labels [y ... [, €
{traversable, untraversable} and feature vectors D;(T1) ... D;(T}) of the training samples
T) ... Ty with the highest similarity (the lowest Jenson-Shannon divergence JD) to the test
vector D;([).

Class Prediction and Confidence Estimation for each k-INN Classifier

Now, the class prediction L; of each classifier C; is obtained from the result list R; using
majority voting, e.g. L, is set to the label {traversable, untraversable} which occurs
more frequently in R;.

To estimate the quality of the class prediction, a confidence measure p; is computed. The
measure consists of two parts. The first component estimates the a posteriori probability
P(L;|D(I)) of the classifier C; assigning the correct label L; to the test region I, given its
description vector D(I). As proposed in [Arlandis 02], the probability is approximated by

Z 1
_ label(Ty)=L; JD(Di(T3), Di(1))

Petass = P(Li| D(I)) = (6.12)

k 1
; JD(D;(T;), Di(I))

As can be seen, this measure takes both the class memberships of the nearest neighbors
and their similarity to I into account. This is advantageous as it provides an informative
confidence measure even in the case that only few training samples are available in the
database and the value of k is small [Arlandis 02]. puass 18 equal to 1 for unanimous
decisions, for which all neighbors have the same class label. In case of conflicting labels,
the measure can theoretically drop down to almost 0 (if 2 very similar samples are overruled
by 3 very dissimilar samples), but never react the exact value.
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The second part of the confidence measure addresses the problem that the estimate for
Peass 18 always equal to 1 if the labels of all retrieved neighbors agree, regardless of their
actual similarity with the test vector. This could lead to the classification of outliers with
deceptively high confidence values, just because the closest neighbors happen to be of the
same class. To avoid this, the probability that the test vector is adequately modeled by
any training sample of the k-NN classifier must be included into the confidence value. A
simple estimation of this is given by the denominator in equation 6.12. The direct sum
of the similarity distances to the k nearest neighbors can be regarded as an indication of
how well the test vector could be classified into any class at all.

In the developed algorithm, the mean value of the distances to all neighbors is used:

> " JD(Di(T;), Di(I))
JD gy = =1

: (6.13)

The fact that JD,,, is not bound between 0 and 1 prevents it from being used as a
confidence measure directly. Normalization to this range requires a mapping function and
a distance threshold above which the classification is considered as too unreliable. Both
can be learned or estimated statistically [Arlandis 02].

For simplicity, an empirically determined mapping function has been used in the developed
approach. The mapping from average similarity to confidence is done using a quadratic
function (see figure 6.31). The function drops to 0 at a threshold JD,,,,, which has been
selected during experiments.

Davy \?
Pdist = Max (1.0 — (jp—g) ; O) (6.14)

i

y
-

0 max_dist\ —
Figure 6.31: The mapping function from average similarity to confidence

The final confidence estimate p; is computed as the product of the classification and
distance based components:

Pi = PclassPdist (615)
Combining Class Votes for the Classifier Ensemble

Label assignment and confidence estimation for each classifier produces three class labels
Ly, Ly, L3 and three confidence scores py, p2, p3. These need to be combined into a single
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class prediction L for the current region. Additionally, a confidence measure p is created
for L, which will be used later as a quality criterion for filling the local traversability maps.

The fusion of outputs from multiple classifiers is not trivial and has received considerable
attention, especially in the context of combining k-NN classifiers [Kuncheva 02]. From the
available methods, a weighted voting scheme has been selected due to its straightforward
applicability and good performance [Kittler 98]. For this, the confidence scores p; are
interpreted as voting weights and summed up according to the label L; to form two voting
scores v(traversable) and v(untraversable). The class label L is then set to the label that
accumulated the higher score. The confidence p is determined by dividing the obtained
voting score by the best possible voting score of 3. Again, p can range from 1 if all three
classifiers are 100% confident and predict the same class, down to almost 0 if all three
classifiers are extremely inconfident.

While theoretically simple and quite efficient in practice, the proposed fusion scheme
deteriorates if the confidence estimates of the single classifiers do not agree with reality. In
such a case, a single erroneous value for a p; is able to dominate the entire voting — although
the resulting confidence will be significantly below 1. A systematical exploration and
evaluation of more sophisticated classifier fusion methods is therefore seen as a promising
area for future research.

Example

Figure 6.32 shows an example of the results produced by the terrain classification.

.
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Figure 6.32: Image with assigned class labels

Each image region is labeled with the final class label L assigned to the region by the
classifier ensemble (0 for traversable terrain, 1 for untraversable) and the confidence p
associated to the classification. The region is also colored according to the final class
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assignment, green for traversable, red for untraversable terrain. The opacity of the used
color is determined by the confidence of the classification.

6.3 Integration

The last section explained how images are segmented and classified into traversable and
non-traversable regions based on their appearance. Now, the gained information needs
to be made available to the robot’s navigation system so that the path planning and
exploration mechanisms of the robot can benefit from it.

The least invasive way to include this new information into the already established system
is to fill another local traversability map with it, similar to the approach taken for the
shape-based terrain traversability estimation before (figure 6.33). With this, the edge
cost prediction algorithm described in chapter 4 can draw upon a total of three different
sensor based information sources: the map constructed from the local obstacle memory,
the long-range map constructed by the shape-based terrain analysis and finally, the map
filled by the appearance-based classification. However, neither the cost prediction nor
the maximum confidence based map fusion algorithm (sect. 5.2.4) need to be modified
internally to handle the new traversability map. This highlights the extensibility of the
developed navigation system.

Figure 6.33: Integration of the appearance-based terrain traversability estimation
As before with the shape-based traversability estimation, the terrain information obtained by the
appearance-based data interpretation is stored into a local traversability map. This map is attached to
a topological node of the high-level navigation map.

In the following, it is assumed that the appearance-based traversability estimation has
been triggered in the vicinity of a topological node and that this node provides a local
traversability map in which the generated traversability data shall be stored.
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In order to map the derived traversability information of the classified image regions onto
the correct seclets of this map, three-dimensional information about the visible terrain is
required. This 3D data can be extracted from the point cloud produced by the stereo
reconstruction of the shape-based traversability estimator. Thus, each time an image is
to be analyzed using the appearance-based approach, the stereo reconstruction step of the
shape-based traversability analysis is triggered, too. Once the point cloud outlining the
terrain surface is available, the points are passed to the appearance-based classifier.

Now, the obtained points are transformed from RCS over ECS into the NCS of the target
node. Then, the source image of the classification is split into quadratic tiles with the
minimum size used during image segmentation, producing a tile layout similar to that
shown in figure 6.24b. This tiling is guaranteed to represent all the available traversability
information without sampling losses.

For each image tile, a set of n valid 3D points is retrieved from the reconstructed point
cloud. In order to do this efficiently, the points are temporarily indexed based on the tile
they belong to (given their original 2D image coordinates) and sorted into an 2D (tile)
array of point lists. During the experiments, a value of n = 32 yielded satisfactory results,
but the choice of this parameter is not critical.

Then, the projection algorithm iterates over all points and all tiles. For each point, the cor-
responding seclet of the local map is determined as shown in section 4.1.3.1 resp. equation
4.8. If the confidence value 0, of the seclet’s risk cost modifier is lower than the final classi-
fier confidence p of the current tile, the seclet’s risk estimate and confidence is updated with
r = 0,0, = p if the tile was labeled traversable, or with (r,w) = (1,1),(6,,0.,) = (p, p)
for untraversable terrain.

In effect, this procedure maps the information of the appearance-based terrain analysis
onto the local traversability map for all image regions whose three dimensional position
could be successfully determined. Note that the effort cost modifier of traversable terrain
can not be estimated accurately by appearance alone. Therefore, the value of 6, is not
modified for these classifications. This missing piece of information can however be filled
in very accurately by the shape-based traversability analysis described in the previous
chapter.

Figure 6.34 shows the result of applying the presented mapping procedure on classified
images from simulation runs. It can be observed that the prominent terrain features
have been classified correctly into traversable and untraversable areas. The subsequent
mapping has projected most of this information at the correct locations, although some
errors occur around the borders of the stone obstacle group. These errors result from
outliers in the point cloud and could be filtered easily, for example by modifying only
seclets that are ‘hit’ by more than a minimal number of points.

6.4 Self-Supervised Traversability Learning

The performance of the terrain classification scheme presented in section 6.2.3 depends
heavily on the quality of the training phase. In order to produce good results, examples for
all of the terrain types that can be encountered during robot operation need to be trained.
This is difficult to achieve for most applications with an useful spatial or temporal scope.
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Figure 6.34: Traversability map built by appearance-based terrain analysis

In order to adapt to changing or a priori unknown terrain conditions, new terrain de-
scription vector / traversability label training pairs need to be generated during robot
operation and inserted into the k-NN classifier databases. Since the robot is designed to
operate autonomously, this incremental online training can not be supported by a hu-
man expert who labels the new prototypes correctly. Thus, the robot system needs to
be augmented with a self-supervised learning strategy that is able to generate the needed
description vector / terrain class label pairs autonomously.

In the scope of this thesis, a variant of the near-to-far learning strategy introduced in sec-
tion 6.1 has been developed. In contrast to the established approaches proposed by other
researchers, this learning technique does not extract traversability information from close-
range tactile sensors or otherwise process raw sensor information. Instead, it observes the
reactions of the behavior-based piloting layer with respect to the crossed terrain. Learning
is thus based on the same source of information as the edge cost learning technique pro-
posed in section 3.5.5, which learns and adjusts the risk and effort costs of a topological
edge by observing the pilot.

Figure 6.35 shows the design of the traversability learning scheme. As can be seen, the
same two sets of behaviors A, B are singled out from the behavior-based piloting subsystem
as before for the edge cost learning (see figure 3.19). To recapitulate their properties, each
behavior in the two sets generate the situation assessment signal r(¢) and exports the
spatial location p(t) of the stimulus responsible for it. The Motor Control Behaviors
B; € B exhibit a non-zero activity 77 (t) whenever current is fed into the actors, i.e. the
robot moves. The stimulus location p%i(t) is the robot’s position itself. The Obstacle
Avoidance Behaviors in A steer the robot safely around obstacles and react to stimuli
(obstacles) originating from a spatial location outside the robot, encoded in p**i(t). The
situation assessment signal 7%¢(¢) is greater than 0 if behavior A; sees a necessity to
influence the robot trajectory in order to avoid an obstacle.
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Figure 6.35: Learning scheme

The traversability learning process itself is divided into two stages: data recording and
the actual generation of new training pairs.

Data Recording

Data recording is initiated whenever the robot performs an appearance-based traversabi-
lity estimation for a topological node and is about to traverse a topological edge afterwards.
In this situation, the point cloud generated during the creation of the local traversabi-
lity map is retrieved (see section 6.3). Each point is projected into ECS and annotated
with the description vector that was extracted for the corresponding image region. The
annotated cloud is then saved for later use.

During robot motion, the traversability learning process observes the assessment signals
r(t) and stimulus locations p(t) of the pilot behaviors in sets A and B. The stimulus
locations are mapped into the ECS coordinate system using the robot’s pose estimate and
stored as well.

Generation of Training Pairs

After the robot finishes the edge traversal movement, the stored behavior signals are
considered in turn. Each time a behavior from set A exhibits a situation assessment
signal p*i(¢) significantly above 0, the corresponding stimulus location p™i(¢) (which has
been identified as an obstacle by the pilot) is matched with the nearest point of in the
annotated point cloud. Then, the description vector associated with this point is labeled
‘untraversable’ and put into the k-NN classifier database.
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The same procedure is performed for behaviors from set B. In this case however, the
stimulus locations pPi(¢) provide positive feedback, as the trajectory of the robot obvi-
ously crosses traversable terrain. Thus, the description vectors corresponding to set B’s
locations are labeled ‘traversable’.

Concerning the implementation of the self-supervised learning technique, the logging
mechanisms originally developed for the edge cost learning can be reused without dif-
ficulties. However, the repeated searches for the point in the annotated point cloud that
lies closest to a given stimulus location are computationally taxing. In order to reduce
the runtime requirements for this and strike a viable compromise between efficiency and
finding correct matches, only approximate nearest neighbor searches are performed. These
searches do only guarantee to find the closest match within a given error bound, but can
be several orders of magnitudes faster that exact searches due to the use of kd-tree search
structures. In this thesis, the publicly available ANN library? was used.

6.5 Experiments and Results

The algorithm for appearance-based terrain traversability estimation was subjected to a
series of experiments in order to determine its accuracy and runtime performance. First,
the obtained results concerning the classification accuracy will be presented. Then, the
measured runtime performance will be discussed.

6.5.1 Classification Accuracy

In order to measure the accuracy of the proposed method, the k-NN classifiers were
trained using a set of 16 hand-labeled training images taken during a typical use of the
robot system at the testing site. Figure 6.36 shows 6 of these images. As before, regions
that were labeled as untraversable by the human expert are marked with a red overlay,
while traversable regions are marked green. In total, 772 valid samples were extracted
from the training set and added to the k-NN classifier databases. The samples contained
11047 valid image tiles with size 32x32. 62% of these tiles were marked untraversable,
38% were traversable.

Qualitative Evaluation

To measure the overall performance of the developed visual terrain traversability esti-
mation method, the algorithm was applied to a test set of 7 images not included in the
original training set. During the tests, a minimal image region size of 32x32 pixels was
used. The other parameters were kept equal to the parameter set used in section 6.2.2.3.

For each test image, a visualization image has been created to present the classification
results in a lucid fashion. These images are shown in figures 6.37 and 6.38. Here, all major
(>7 tiles) image regions are annotated with their classification labels and confidences.
Each image region contains four pairs of scores. As before with the example shown in
section 6.2.3.4, the uppermost pair shows the final class label L assigned to the region by
the classifier ensemble (0 for traversable terrain, 1 for untraversable) and the confidence
p. Again, the region is colorized to indicate the final class assignment (the color intensity

2http://wuw.cs.umd.edu/ "mount/ANN/
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Figure 6.36: Some training images

depends upon p). The three pairs below the top row contain the votes and the confidences
of the three separate classifiers, in the order textural structure (LBP) classifier, brightness
variation (VAR) classifier and color classifier.

Figure 6.38 shows more classification results of the test set. In order to ensure legibility,
only the final classification label L and confidence p is annotated for these images.

Quantitative Evaluation

For a quantitative evaluation of the classifier accuracy, the test set was labeled by hand
to generate ground truth data. This data was then matched with the classified images
shown in figures 6.37 and 6.38. To compare the automatically segmented images with
the ground truth images, each image was split into 32x32 pixel tiles and the comparison
between assigned and correct label was done tile by tile. Tiles containing sky were excluded
from the evaluation in order to avoid skewing the results by the substantial amount of
sky tiles in the test set. Although these tiles are always classified correctly due to the
highly distinct signature of overexposed image regions, they do not provide any useful
traversability information. Including these tiles would therefore produce unrealistically
good accuracy measures without practical relevance.

In total, 4619 image tiles were compared. 3308 (72%) tiles had been labeled untraversable
by the human, 1311 (28%) had been labeled traversable. Table 6.3 shows the obtained
overall classification accuracy for the classifier ensemble responsible for the final classi-
fication, as well as the scores that would have been obtained by each single classifier
alone.

As can be seen, the combined classifier is able to distinguish traversable from untraversable
terrain with an accuracy of almost 90%. Taken on it’s own, this is an excellent result. Of
course, the training and testing sets have been recorded in the same area and a part of the
training images has been taken in bright daylight, similar to the testing set images. Thus,
the environmental conditions of the test set have been well trained. Nevertheless, the
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Figure 6.37: Classification results on test set
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Figure 6.38: More classification results on test set

All  Texture (LBP) Contrast (VAR) Color (HSV)
89.3 % 81.4% 86.5 % 88.0%

Table 6.3: Overall classification accuracy

test set contains images with new (untrained) object types (bushes, cars, other buildings),
difficult illumination conditions and rotated perspectives. With these effects in mind, the
achieved accuracy is definitely noteworthy and shows how much the appearance-based
traversability estimation method can contribute to the robot navigation as a whole.

Table 6.3 also shows that the classifier ensemble has the lowest overall classification error.
This proves that the combination of different feature extraction operators really provides
some merit. However, the benefit of using the classifier ensemble instead of the single
classifiers does appears to be rather low in this experiment, as each of the separate classi-
fiers performs almost as well as the three classifiers together. In order to further explore
this curious behavior and the reasons for this and the remaining classification errors, the
classifier performance is examined more thoroughly in the following.

Table 6.4 lists the percentages of correct and incorrect classifications, separated according
to the true label of the image tiles. This statistics allows to look more closely at the dis-
tribution of correct and incorrect classifications with respect to the two true traversability
classes.
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Correct Classification as Incorrect Classification as
Classifier Traversable Untraversable Traversable Untraversable
All 79.4 % 93.3 % 6.7 % 20.6 %
Texture (LBP) 7.7 % 82.8 % 17.2% 22.3%
Contrast (VAR) 69.4 % 93.3% 6.6 % 30.6 %
Color (HSV) 7.7 % 92.4 % 7.6 % 22.9%

Table 6.4: Classification confusion statistics

Given these error figures, it is apparently more difficult to classify traversable areas cor-
rectly than untraversable ones. This effect can be observed for all classifiers as well as the
ensemble. One possible explanation of this could be the lower proportion of traversable
training samples in the classifier databases. k-NN classifiers are well known to become bi-
ased in the presence of unbalanced training sets, and the weakness in classifying traversable
terrain correctly might be a result of this property. Another possible cause could be the
high similarity of streets and the sky. Both are uniformly textured, exhibit low contrast
and are rather achromatic. However, their traversability labels in training are different.
But since sky samples are more common than street tiles, the traversable street regions
are likely to be assigned the untraversable label from the sky samples. This illustrates
the importances of selecting an appropriate training set. In this case, an easy solution to
this problem would be to leave the sky parts unlabeled, as sky tiles are not relevant for
traversability estimation anyway.

Classifier Liability

It is also interesting to analyze which of the classifiers are involved into an ultimately wrong
classification result, i.e. to evaluate the classifiers’ liability for classification failures. This
was done by counting the number of times that each classifier’s own result was incorrect,
given that the final classification was incorrect, too. Table 6.5 shows the fraction of these
counts with respect to the total number of incorrect classifications. These values sum up
to more than 100 % since more than one classifier can (and mostly will) be wrong if the
overall classification result is incorrect.

Texture (LBP) Contrast (VAR) Color (HSV)
64.4 % 81.6 % 54.0 %

Table 6.5: Classifier liability

It appears that the contrast operator had the greatest detrimental effect on the overall
classification. The contrast operator was at least partially involved in the production of
incorrect results in 81.6% of the cases. Considering table 6.4, it appears likely that many of
these cases resulted in a traversable region begin classified as untraversable. This and the
fact that the street and sky textures stand out especially with respect to their contrast
again points in the direction of this already identified problem. In total, the liability
analysis highlights the different characteristics of the three feature extractors, which each
have distinct advantages and drawbacks.



208 6. Appearance-Based Terrain Traversability Estimation

Time Series Analysis

It may come as a surprise that the classifier based on the color features alone performed
almost as well as the classifier ensemble and outperformed the other, single classifiers in
the test set experiment. However, the test images were relatively homogeneous in terms
of illumination, making discrimination based on color information easy. One could thus
hypothesize that the strengths of the other operators are more observable when stronger
illumination changes or other image variations occur.

This hypothesis was tested using a time series analysis using images that have been taken
over a longer period of time. Figure 6.39 shows three such images, all from the same
camera position showing the same scene. The recording times of the images were 10.21
am, 14.08 pm and 17.25 pm. Obviously, illumination and contrast, and thereby colors
changed significantly during that time.

Figure 6.39: Some images used for the time series experiment
From left to right, images were recorded at morning, afternoon and early evening.

Leave-one-out evaluation of the time series test set resulted in the total classification
accuracies for the single classifiers listed in table 6.6.

All  Texture (LBP) Contrast (VAR) Color (HSV)
94.7% 96.4 % 82.9% 85.5 %

Table 6.6: Classification accuracy for time series experiment

In the time series experiment, the color classifier performed much worse than before. The
same holds for the contrast classifier, whereas the textural structure classifier performed
very well. Due to the nature of the extracted features, the contrast operator is strongly
affected by the changes in illumination brightness, while the color operator is not invariant
to changes in illumination color. Both do not influence the LBP operator, and since the
texture pattern of the image components already have been seen during training (and have
not changed much), good classification is possible based on the textural image structure.

These results support the initial hypothesis about the good performance of the color clas-
sifier on the test set. It also reveals that the real benefit of the combined classification
technique is not so much an improved classification accuracy in comparison to the single
classifiers, but an increased stability against environmental changes. In combination with
the first experiment, the consistently good performance of the classifier ensemble shows
that it is able to rely on the color and contrast features for ‘easy’ images which have
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high similarity with the training set, whereas it can exploit the strengths of the textural
features for classification tasks containing larger illumination changes. Using the classi-
fier ensemble, the appearance-based terrain classification can successfully draw upon the
complementary discrimination abilities of the different features.

Influence of Segmentation and Tiling

The use of unsupervised segmentation as a preparational step for terrain classification has
both benefits and drawbacks. On the positive side, fewer regions need to be classified after
segmentation and the description vectors of larger regions are statistically more stable. On
the negative side, the segmentation is not always perfect. The remaining regions can be
too large and group terrain with different traversability labels. Since one region can only
be assigned one class label, some errors are bound to be induced by such an inappropriate
segmentation.

Although the exact influence of the segmentation stage on the classifier performance is
difficult to quantify accurately, it can be estimated by classifying the same images that
have been used for classifier training. During training, the overly ambiguous regions
have been removed, but such a filtering step based on ground truth data is of course
not possible for real classification tasks. Thus, the errors introduced by the segmentation
become visible. Table 6.7 summarizes the obtained results.

All  Texture (LBP) Contrast (VAR) Color (HSV)
94 % 90.2 % 86.8 % 90.1 %

Table 6.7: Overall classification accuracy on training set

As can be seen, the error rates are much lower (almost halved) than with the test set.
However, the remaining classification error is still significant. This indicates that the
unsupervised segmentation and minimum tiling size of the source images introduces a non
negligible amount of error into the total classifier accuracy.

Confidence Distribution

Figure 6.40 shows the confidence distribution of the classification results. A histogram is
build over all confidence values p that were assigned to classified tiles.

Overall, the samples are likely to be classified with a rather high confidence, over 55 % of
all samples are classified with p > 0.7. However, the most interesting part of the confidence
distributions are the differences between the confidences assigned for classifications that
were correct (figure 6.40b) and those that were incorrect (figure 6.40c).

The correct classifications are made with an average confidence of 0.69 and more than 77%
of the classified tiles exceed a confidence score of 0.6. In contrast to this, the incorrectly
labeled samples attain a lower average score of 0.45, and less than 22% of the classified
tiles attain a confidence of 0.6 or more.

Thus, the assigned confidence value does indeed contain valuable information. It can easily
be utilized to filter incorrect classifications, for example by only integrating traversal cost
modifiers into the final local traversability map (as shown in section 6.3) which exceed a
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Figure 6.40: Classification confidence

given threshold for p. However, even without adding such a drastic filtering step, incorrect
classification results with low p have less impact on the path cost estimation than correct
ones with high p anyway. After all, p is used to set the seclet confidence value, which in
turn determines the actual seclet cost through bilinear interpolation. This interpolation
ensures that seclets with low confidence are assigned costs close to the default value for
unknown terrain, regardless of the actual (unreliable) cost modifier.

6.5.2 Online Learning

The performance of the online learning scheme has initially been evaluated in the SimVis3D
simulation [Braun 07] to ensure repeatable conditions. Figure 6.41 shows the training
pairs that have been successfully added to the k-NN database after executing a driving
command that led the robot across a grassy surface besides some stone cubes inserted to
serve as a distinct obstacle. Green squares indicate patches that have been recognized as
traversable, while red indicates impassable obstacles.

Figure 6.41: Training samples added after execution of a driving command
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Learned terrain traversability classifications are shown in figure 6.42. For this experi-
ment, the k-NN database has been wiped at startup, thus the first terrain classification
(figure 6.42a) marks all regions with a ‘neutral’ traversability value of 0.5. After execut-
ing some driving commands, the classifier database starts to become populated and the
classifications become more sensible (Figures 6.42b, 6.42¢).

(a) No prior knowledge (b) 200 samples added (c) 400 samples added

Figure 6.42: Online learning in simulation

Finally, the learning scheme was applied to a real-world scenario using the real robot.
Again, the classifier database was cleared initially. Then, the navigator was commanded
to perform a series of driving commands while observing the obstacle avoidance behaviors
and autonomously collecting terrain description / traversability pairs. After adding 33
samples to the database, a previously unknown image has been classified according to
figure 6.43. As can be seen, the estimated traversability is approximately correct for the
larger part of the image, although a significant number of regions is misclassified.

Figure 6.43: Autonomously learned terrain traversability estimation
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Figure 6.44: Runtimes for shape- and appearance-based terrain analysis

6.5.3 Runtime Performance

To evaluate the runtime performance of the terrain traversability system, the processing
times needed by its different steps have been analyzed. This was done with a series
of five images taken from simulation. As stated in section 6.3, the appearance-based
evaluation requires the point cloud from shape-based analysis in order to map from the
classified images into the 3D world coordinate system. Therefore, both appearance-based
terrain evaluation and shape-based evaluation are normally activated simultaneously by
the navigator and process the captured images from the stereo system in parallel on a
dual-core CPU. Due to the needed synchronization between the two methods, the timing
of both systems with respect to each other is important and has been recorded during the
runtime measurements. The resulting graph is shown in figure 6.44.

It is observable that the single most time consuming part of the appearance-based algo-
rithm is feature extraction (41 % of total processing time). The extraction of the texture
features requires by far the most of this time (more than 90 %), whereas color and contrast
features can be retrieved quickly. The second and third most time consuming steps are
classification (27 % of the total) and image segmentation (25 % of the total).

The high time consumption of the classification step stems mainly from the nearest neigh-
bor searches done by the k-NN classifiers. Here, for each unknown sample, the JD diver-
gence to all d samples in the database has to be computed. The required time thus rises
linearly with the size of the database. To prevent deteriorating the system performance in
conjunction with online learning, one could try to ensure small database sizes for example
by pruning samples that are not used for classification for a long time. Another way to
speed up the k-NN classification would be to use a more sophisticated neighbor search
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(e.g. using kd-trees, or hashing). However, this would require the use of a real distance
metric instead of the Jensen-Shannon pseudo metric used at the moment (the kd-tree
algorithms build upon the triangle inequality relation, which is not fulfilled for JD). Thus,
such optimizations are deemed future work.

For the shape-based analysis, the three most time consuming parts are the generation of
the dense disparity map, the matching of the sparse features, and the detection of well
matchable features. As can be seen in the figure, the appearance-based operator must
only wait for the point cloud after the first image; here some initializations prolong the
feature detection and matching steps. After the first image, it does not need to wait any
more for a new image from the image grabber, or the reconstructed point cloud from
shape-based analysis.

6.6 GPU Based Runtime Optimization

The experiments revealed that the presented terrain classification approach performs well
in practice and supplies useful information to the navigation system. However, a whole
range of aspects can be further improved. One of the more severe problems which limit
the usability of the entire sensor based terrain analysis method is the large computational
cost incurred by the various processing steps. While the shape-based analysis suffers from
the high computational effort of the sparse and dense stereo reconstruction methods, the
appearance-based technique is slowed down most by the extraction of the image features,
namely the multi-scale local binary pattern texture features.

Thus, a way to improve the runtime characteristics of the feature extraction step has been
sought. In the past, specialized hardware components have been proposed as a solution for
real-time texture analysis [Lahdenoja 06]. Unfortunately, these devices are often costly,
not widely available and lack flexibility. In contrast to this, today’s cheap and freely
available customer-grade graphics cards (GPUs) have become programmable enough so
that they can be used to efficiently solve such problems.

Therefore, a reformulation of the uniform, multi-scale Local Binary Pattern Operator
introduced in section 6.2.1.1 has been developed which can be efficiently executed on a
GPU. The new algorithm is integrated into a pipeline framework that handles the low-
level data flow between different GPU program elements. This concept can be transferred
easily to other GPU-based algorithms. The developed algorithm and the obtained results
have been presented to the public in a joint publication with G. Zolynski [Zolynski 08].

6.6.1 Developed Approach

The GPU implementation focuses on the most time consuming, first step of the feature
vector generation, the transformation of the input image into the LBP feature image (see
figure 6.11).

The concrete algorithm is implemented as a sequence of GPU fragment shader programs
using NVIDIA’s Cg programming language. Each shader program takes an image and
transforms it into an output image, which serves as basis for the next program. Since
the fragment shaders are capable of processing four floating point ‘channels’ in parallel
(usually calculating RGBA color values), the sampling points of the multi-scale LBP
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Figure 6.45: RGBA channel allocation for the multiscale LBP operator

operator LBPg. 511613 shown in figure 6.20 are split into four LBP patterns with 8 samples,
distributed across the four scales as indicated by figure 6.45.

The shader program sequence executed in order to compute the LBP image is depicted
in figure 6.46.

Upload Spread Gauss X Gauss Y LBP Mapping

Figure 6.46: Sequence of GPU shader programs for LBP image computation

After uploading the input image, it is first spread (copied) over all color channels. After-
wards, each channel is blurred in two steps using separated Gaussian filter kernels. The
kernel sigma is chosen according to the sampling radius of the corresponding LBP ring
and computed according to the formulas presented in section 6.2.1.1. Note that since the
two largest LBP rings (stored in the blue and alpha channels) have equal radii, their sigma
values are also equal.

The core step of the algorithm is the computation of the LBP values from the blurred
images. For this, a branch-free and vectorized reformulation of the standard algorithm
has been developed (figure 6.47).

An important feature of this vectorized GPU algorithm is the explicitly performed 4-fold
predication using the variable predicate. This removes the computationally expensive
branching required in the naive implementation and allows the shader program to run at
full speed. As a further advantage, whenever the take4Samples method needs to sample
points that are not exactly aligned with actual pixels, the automatic interpolation offered
by the graphics hardware can be exploited at no extra speed penalty. The final step of the
processing pipeline consists of the value mapping required for the uniform LBP extension
and is realized as a simple texture lookup.
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6.6.2 Evaluation

Experiments were carried out using GeForce 7600 GT, 8600 GT and 8800 GTS type
graphics cards measuring the speed and the accuracy of the implemented operator. As
evaluation basis, 33 test images published by the Signal & Image Processing Institute
(University of South California)® with dimensions 512x512 were used for the accuracy
tests. The speed was evaluated on 43 typical input images with dimensions of 1024x1024
pixels.

Accuracy

The first experiment compared the accuracy of the proposed GPU operator with a ref-
erence implementation based upon a C++ port of the code published by the original
LBP authors. Since the reference implementation is based on 32 bit integer computation
and the GPU implementation uses 16-bit floating point accuracy (‘half’ values in Cg)
to achieve faster processing speeds and enable hardware-accelerated linear interpolation,
slight amounts of incorrectly computed LBP values had to be expected.

As can be seen in figure 6.48, between 0.2% and 1% of the computed values differed from
the C++ implementation, depending on the input image. Also, one can observe an overall
accuracy improvement between NVIDIA’s GeForce 7 and GeForce 8 chipset families, as
the GeForce 8 cards typically exhibit about 20-40% fewer errors than the GeForce 7 cards.
Overall, the comparisons showed that on average, less than 0.5% of the computed values
are inaccurate, which was seen as acceptable.

Speed

The foremost aim of using the GPU was to achieve real time capability on available and
comparably cheap hardware. Being massively parallel by design, the Local Binary Pattern
operator is very well suited to be implemented on the likewise parallel architecture of a
GPU processor. Since every LBP pattern is independent, any amount of patterns can be
computed simultaneously. The limit to the number of concurrent executions is only set

3http://sipi.usc.edu/database/database.cgi?volume=textures

int pattern = 0; int4 patterns = int4(0, 0, 0, 0);
int centerVal= takeSample(center); int4 centerVals = take4Samples(center);
int mult = 1;
for (int i=0; i<numSamples; i++) for (int i=0; i<numSamples; i++)
{ {
int neighborValue = int4 neighborVals =
takeSample (neighbor[i]); take4Samples (neighbor[i]);
if (neighborValue > centerVal) bool4 predicate =
{ (neighborVals>centerVals) ;
setBit(pattern, i, 1); patterns += (int4(predicate) * mult);
} mult *= 2;
} }
(a) Naive CPU Implementation (b) Vectorized GPU Code

Figure 6.47: Pseudo-code for vectorized LBP code
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Figure 6.48: Percentage of LBP values diverging from reference
The LBP values of the GPU implementation and reference implementation were compared for the
images contained in the South California SIPI Dataset

by the amount of shading pipelines within a graphics processor, which is as much as 96
for the GeForce 8300 GTS.

Run time was measured using images with dimensions of 1024x1024 pixels. For each image,
the LBP feature image was created 10,000 times and the measurements were averaged.

Total
CPU / GPU Processing Time Upload Computation Download
Core2Quad 2.4GHz! 1150 ms - 1150 ms -
GeForce 7600 GT 83 ms 17 ms 20 ms 46 ms
GeForce 8600 GT 72 ms 17 ms 11 ms 44 ms
GeForce 8800 GT'S 65 ms 17 ms 5 ms 43 ms

Table 6.8: Speed comparison CPU / GPUs

1 Only 1 core was used during the experiment.

Table 6.8 shows the execution speed of the three graphics adapters compared with the
CPU reference implementation. Even the slowest GeForce 7600 GT adapter beats the
CPU by a factor of almost 14. On the other hand, differences between cards are small,
since most of the time is spent in the data up and download phase. The relative time
differences are presented visually in figure 6.49.

Note that the CPU implementation was running on a single core only. Assuming that
the bottleneck of CPU computation is the processor and not the memory (which appears
unlikely, as the core did not reach maximum load during the tests), the CPU execution
time could be lowered to a quarter, which is still about 3.5 to 4.0 times slower than the
GPU implementation. However, this would block the entire CPU, preventing any other
(navigation-related) computations.
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Figure 6.49: Speed comparison CPU / GPUs

6.6.2.1 Conclusion

The reformulation of the multi-scaled Local Binary Pattern Texture Analysis Operator
on a GPU allows to effectively reduce the run time for feature extraction down to a level
where it has no noticeable impact on the runtime of the whole appearance-based terrain
classification subsystem anymore. Results show that even using older graphics cards,
~ 10 fps can be attained even with the full resolution of 1600x1200 pixels, while the CPU
remains idle except for the data transfer.

Even more importantly, it has highlighted the tremendous potential of the emerging field
of GPU computation to speed up lengthy, but well parallelizable calculations. Therefore,
the color and variance operators, the recursive splitting stage of image segmentation or
the stereo reconstruction of the shape-based terrain classification methods are viable can-
didates to be ported to the GPU. If this can be done successfully, it is highly likely that
the entire visual terrain traversability estimation can be run with a frequency of about 1
Hz. This would allow the use during robot motion and could provide a large benefit to
the pilot’s obstacle avoidance capabilities.

6.7 Conclusion

Summary

The goal of the approach presented in this chapter was to develop a system capable of
estimating the traversability of terrain based on its appearance, rather than the geomet-
rical shape. With this system, it becomes possible to distinguish vegetation types which
can be traversed (such as tall grass) from intrafficable types such as bushes or trees.

In order to achieve high classification performance and robustness, a combination of three
different, complementary visual features has been selected as information sources. Those
include a color operator based on the HSV color space, a multi-scale local binary patterns
texture feature and an operator sensitive to contrast variations. During operation, similar
image regions are first identified in an unsupervised segmentation step. The clustered
results are then classified into traversable or untraversable terrain types based on an
ensemble of three k-NN classifiers.

The classifiers were initially trained with labeled sample images, but an online learning
method has been developed in order to update the classifiers and adapt them to new
terrain types. With this novel technique, traversability information is gathered through
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observation of the piloting behaviors while the robot moves along a topological edge. After
the robot has concluded the movement, the recorded traversability information is matched
with regions of classified images and added as new samples to the classifiers’ knowledge
databases.

The appearance-based image classification process was integrated into the complete navi-
gation system developed in the scope of this thesis by mapping the obtained traversability
information onto a local traversability map that can be seamlessly integrated into the
cost prediction and exploration algorithms of the navigator. This successfully augments
the robot’s long range path planning capabilities with appearance-based traversability
information.

Discussion and Outlook

The conducted experiments showed that the overall classification accuracy of the develop
method is quite high, even given the limited amount of training samples provided. While
the color features worked best for the first test set used in the evaluation, the strengths
of the textural features became visible in the time series experiment that included more
pronounced illumination changes. The combination of these classifiers was shown to suc-
cessfully combine the strengths of each single classifier, leading to a good and robust
overall performance.

Furthermore, the online learning scheme was shown to be usable both in simulation and
in real application. It allows to build a traversability database from scratch using the
self-observational learning technique developed for this purpose. This addresses the lack
of adaptability which is the most prominent drawback of established, statically trained
traversability estimation methods.

Additionally, it was shown that the generated confidence measures are high if samples
are classified correctly, and much lower if they are classified incorrectly. Thus, wrong
classification results are not so harmful in general since the navigator relies less on them.
Alternatively, a filtering mechanism could be established based on the confidence measure.

Although the established system works well, many improvements are still possible. For
one, processing speed has been identified as a problematic issue during testing and cur-
rently prevents the terrain analysis to be employed with high frequency. However, the
implementation of the time consuming textural structure extraction on a GPU and the
resulting speedup (13 times faster) has marked parallel computing on graphics hardware
as a very promising means to solve this issue.

Concerning the algorithm accuracy, the conducted experiments also showed that the un-
supervised segmentation step is problematic and introduces significant amounts of classi-
fication errors. Pixel-wise segmentation methods should therefore be explored to reduce
the impact of erroneous segmentations.

Finally, the combination of classifiers is currently done using a simple (weighted) voting
technique. Many other, more sophisticated classifier fusion approaches have been pre-
sented in the literature. Further experiments should be conducted in order to determine
their usability in the proposed terrain classification method. In this context, the confi-
dence measures could possibly also be modified to represent real class probabilities, so
that a rigorous mathematical treatment becomes possible.
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7.1 Summary

This thesis addresses the problem of finding a global robot navigation strategy for rugged
off-road terrain which is robust against inaccurate self-localization and scalable to large
environments, but also cost-efficient, e.g. able to generate navigation paths which optimize
a cost measure closely related to terrain traversability.

At the beginning of the thesis, it was argued that an appropriate cost measure which quan-
tifies the traversability of different travel options is essential to select optimally traversable
paths for global navigation. It was conjectured that many established methods for off-road
navigation generate such a cost measure using a fine-grained and bulky metrical world
model which can not easily be scaled up to map large, rugged environments with substan-
tial vegetation. Other approaches employ a topological map which abstracts completely
from finer metrical details. While topological techniques scale better and are less affected
by bad localization, these techniques also abstract from most issues related to terrain
traversability. Thus, they do not support cost-efficient path planning in off-road terrain
well.

Based on these conjectures, it was hypothesized that the formulation of a new strat-
egy which unites aspects of both metrical and topological approaches could exploit the
strengths of both techniques without inheriting their weaknesses. Such a combination
could allow the construction of a compact and thus scalable world model which is ca-
pable to support reasoning about traversability costs. In combination with continuous
refinement of the model based on accumulated navigation experience, this could allow the
definition of a scalable, yet cost-efficient navigation system.

In order to test this hypothesis, a new navigation methodology has been formulated which
extends a primarily topological map with new aspects that enable cost-efficient path plan-
ning on the topological level. These novel contributions include:

e a special topological map with typed edges and nodes to signify speculative and
consolidated connections and places,
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a multi-dimensional cost measure for topological edges which captures the most
relevant aspects of terrain traversability,

e a mathematical method to use this cost measure for path planning with user-
selectable priorities,

e algorithms to optimize the map after navigation successes and failures,

e a technique to learn consistent edge cost measures from scratch based on feedback
from a local navigation layer,

e a set of methods to predict edge costs based on existing cost annotations,

e a new metrical data structure termed ‘local traversability map’” which contains cost
modifiers to improve the cost prediction for edges leading into untraversed terrain,

e a set of methods to fill local traversability maps with cost information based on
analyzing long range visual sensor data with respect to terrain shape and appearance.

Experiments conducted with the proposed navigation methodology validate the claim that
the new, hybrid metrical / topological map structure indeed allows to perform cost-efficient
path planning. At the same time, the navigation system does not need to construct
an extensive metrical world model in order to reason about traversability costs. This
makes the presented approach highly scalable and supports the initial hypothesis which
encouraged a combination of purely metrical or topological navigation systems in order
to combine their respective strengths.

The contributions listed above are the results of deliberations that were motivated by the
set of initial questions raised in the introduction of the thesis. The following paragraphs
provide more detail on these deliberations. The presentation is ordered according to the
aspects that were initially identified as especially relevant for a scalable, cost-efficient
navigation system.

Appropriate World and Travel Cost Representation

An extensive literature survey of map types used for in- and outdoor robot navigation
evaluated the strengths and weaknesses of different map types for off-road navigation.
The evaluation results supported the initial claim that established methods for off-road
navigation either generate a cost measure suitable to plan well traversable paths using a
fine-grained and thus badly scalable metrical world model or employ a topological map
which abstracts too much from terrain traversability. The survey also indicated that a
hierarchical hybrid map which combines a topological global map with multiple local met-
rical maps is a highly suitable candidate for scalable and cost-efficient global navigation.

Motivated by this result, a novel hierarchical hybrid world map for global off-road naviga-
tion was proposed and formally defined. The topological part of this map represents the
global connectivity of places and allows path planning on the global scale. In contrast to
many other topological maps used for indoor tasks, directed edges are used to allow the
modeling of asymmetrical travel costs which arise frequently in sloped outdoor terrain.
Furthermore, an additional type attribute allows to explicitly distinguish between verified,
hypothetical and untraversable map elements. This eliminates mathematically unsound
workarounds used by some other approaches that mark untraversable connections using
e.g. unrealistically high cost values.
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In order to assign travel costs to topological edges as required for cost-efficient path
planning, a multi-dimensional cost measure was introduced to represent all relevant terrain
aspects of outdoor terrain. The three cost factors risk, effort and familiarity were included
in the measure because they model the key aspects of travel costs and can be correlated
with observable robot experience. This was identified as a prerequisite to improve cost
estimates through feedback learning.

To mitigate the topological map’s lack of traversability cost information for terrain which
is not covered by topological edges, a new metrical map structure termed ‘local traversa-
bility map’ was proposed. These maps constitute the metrical part of the hybrid world
model and contain circularly arranged patches storing traversability cost modifiers for the
terrain surrounding a topological node. It was confirmed by experiments that the capa-
bility to store cost information for these areas significantly improves the ability to predict
risk costs for new topological connections. A sophisticated three-dimensional simulation
environment was developed to conduct these experiments [Braun 07].

Interaction of Global and Local Navigation Layers

In order to use stored costs to perform cost-efficient path planning, a formalism was
proposed to map multi-dimensional cost measures onto scalar values. This allows the
application of standard graph algorithms for path planning. The introduction of a ‘moti-
vational state” which alters the relative weights of each cost factor in the mapping function
offered an intuitive interface to tune path planning priorities according to specific mission
requirements. The influence of different motivational states and the plausibility of the
resulting paths was validated using both simulation and real-world experiments.

Based on the formulated techniques for path planning, the transformation of generated
paths into driving commands for the local piloting layer was considered. In order to min-
imize swaying of the robot during motion, a new algorithm was proposed which specifies
both target positions and suitable target orientations.

The interaction between navigator and pilot during path traversal also necessitated the
specification of a reliable way to detect the arrival at a target node despite of inaccu-
rate self-localization. The proposed ‘arrival detection with postponement’ method was
designed to fulfill this requirement. In contrast to a standard catchment area based ap-
proach, it is more adaptive and also able to let the robot converge to the precise location
of the topological node in case localization accuracy is actually better than anticipated.
Furthermore, an algorithm to detect failures to reach a target position was developed. It
is able to recognize both dead- and livelocks while the robot approaches a given target
position.

Once a navigation success or failure is detected, the navigation system has gained in-
formation which can be used to refine its map. To make future path planning steps
more efficient, algorithms to represent such events in the topological map were developed
and experimentally validated. The successful arrival at a node is used to correct badly
placed node positions. The fusion of nodes that move too closely together thereby en-
sures a maximal node density. Therefore, it can be assumed that nodes can always be
identified uniquely using the available localization accuracy. Navigation failures result in
untraversable connections which are excluded from further path planning.
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Consistent Travel Cost Assessment

Building on the proposed cost representation and the basic capabilities to plan and tra-
verse paths, the specification of consistent edge traversal costs was addressed. In order to
estimate such costs even though the global navigation layer does not know the actual robot
trajectory for a given edge in advance, a novel a posteriori learning scheme was proposed
[Braun 08al]. This cost learning method observes the pilot’s behaviors during motion and
integrates the observations afterwards into multi-dimensional cost information that accu-
rately represented the costs incurred during driving. A spatio-temporal integration step
was introduced for behaviors reacting to exterior stimuli in order to ensure independence
of the integration value from variable robot speeds. For proprioceptive behaviors, a purely
temporal integration was found to be sufficient.

Tests showed that the pilot can react differently in each traversal and thus introduces a
high degree of uncertainty in the assessed edge cost. To handle this uncertainty in the path
planning stage, the mapping of the cost measures to the scalar value used for path planning
was extended to incorporate the variance of the assessed travel cost measures. This allows
the path planning to be tuned either ‘optimistical’ or ‘pessimistical’ and offers another
degree of freedom to adjust path planning to mission requirements. Results concerning
this aspect have been published in cooperation with J. Hirth [Hirth 07].

The performance of the proposed map model, cost measure and the a posteriori learning
scheme was evaluated in a series of simulation and real-world experiments. The obtained
results document that the proposed method is capable of refining a given map by improv-
ing node positions, detecting untraversable connections and removing them from further
planning. Also, it allows to build sensible map edge costs starting from an initially unan-
notated topological map. By virtue of the cost learner’s design, these costs are consistent
with the experience of the local pilot, thus capturing all obstacle encounters that required
intervention as well as all factors that influenced the robot’s energy consumption. All
this was achieved without adding new domain knowledge to the global navigation system,
except for specifying which part of the pilot is to be observed for what cost factor.

Prediction of Travel Costs and Map Extension

While the assessment of consistent edge costs is suitable to learn and consolidate cost in-
formation for known edges which are passed frequently, the exploration of unknown terrain
or hypothetical edges does not benefit from it. In order to extend the navigation system,
four new extrapolation techniques were devised to transfer existing cost information to
unannotated links. Three of these methods reuse information stored in the topological
part of the map, but incorporate data on different levels of locality. The coarsest method
builds a global cost model, the second technique constructs a local model and the third
approach predicts costs based solely an edge’s direct inverse twin. This allows to exploit
the closest source of cost information available for a connection in question. The presented
approach is able to use increasingly accurate extrapolation techniques as the available cost
information accumulates. This was verified and quantitatively analyzed by an extensive
large-scale simulation test.

In order to account for terrain properties which have not been included into existing
edges and are therefore not captured by the extrapolation of topological map information,
a fourth cost prediction algorithm was proposed which uses the local traversability maps of



7.1. Summary 223

the hybrid world model as information source. The system fills these maps by reusing the
obstacle memory of the local pilot and extracting traversable free space and untraversable
obstacles. It was shown that this method is very efficient as it does not involve additional
sensor analysis steps, yet provides highly accurate cost modifiers at close ranges. By
combining the learned costs in the topological edges and the modifiers stored in the local
metrical map, the cost extrapolation accuracy can be greatly improved especially with
respect to the ‘risk’ cost factor, which depends on the amount of obstacle evasions during
edge traversal. This effect was quantitatively analyzed along with the performance of the
other extrapolation techniques in the experimental validation.

Based on the developed cost extrapolation methods, an exploration strategy was proposed
which generates new connection hypotheses from two sets of possibilities. After consid-
ering all valid hypotheses, only the candidate with the lowest predicted costs is actually
implemented. This keeps the map as small as possible, in accordance to the formulated
objective to retain a minimal world model.

Asides from simulation results, the devised approach’s performance was put to the test
during a real-world, competitive scenario posed during the ELROB 2008 trial. In this
trial, the global navigation system was capable to recover from an impassable obstacle that
blocked the predefined route and generate an alternative route which led the robot safely
along a pathway over 1 km, until the alternative route merged again with the predefined
one. This successful demonstration of global navigation skills led to the qualification
of the team for the final scenario. This was accomplished by just 3 other teams out
of 11 contestants. RAVON actually achieved the highest possible scores for navigation
autonomy in both the qualification and the final run.

Improved Large-Scale Travel Cost Prediction using Sensor Information

The developed cost prediction method which relies on the pilot’s local obstacle memory
is limited to predictions within the memory’s maximal range. In order to augment the
cost prediction capabilities of the navigation system at greater distances, two additional
methods were researched which analyze high-resolution visual sensor data and extract
terrain traversability information over much longer ranges.

A shape-based terrain analysis approach was devised which approximates the surrounding
terrain using either planes containing slope information or purely height-based elevation
planes. Obtained experimental results revealed that this novel combination of two estab-
lished models allows to extend both range and accuracy of the obtained terrain model
compared to just using a single variant [Braun 08b]. They also showed that the method is
applicable to a variety of different outdoor environments and provides useful information
within a range of up to 30 meters. The extracted slope information is mapped to cost
modifiers and stored in a local traversability map that can be seamlessly integrated into
the cost prediction algorithm introduced before. In this way, the world model remains
minimal and focused on the central topic of supporting cost-efficient navigation.

To distinguish traversable vegetation types (such as tall grass) from intrafficable types
such as bushes or trees, the second sensor based method that was proposed in this thesis
estimates the traversability of terrain based on its visual appearance. Stability against en-
vironmental changes is achieved by considering a combination of the three complementary
visual features color, contrast and texture. After unsupervised clustering, regions are clas-
sified into traversable or untraversable terrain types based on a k-NN classifier ensemble.
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As before, the resulting traversal costs modifiers are put into a local traversability map
and attached to the corresponding topological node for the use within the cost prediction
algorithm.

The appearance-based approach was subsequently augmented with an online learning
method to reduce the amount of a priori world knowledge that has to be invested into
training the classification database. Using the same methodology as the cost assessment
algorithm, the terrain appearance learning method updates the classifier databases by
observing the piloting behaviors. With this new technique, traversability information is
continually gathered while the robot moves along a topological edge. The capability to
learn sensible terrain classifications from scratch was demonstrated experimentally.

A second improvement was put forward to improve the computation speed of the sensor
analysis methods. A GPU based method was developed to extract the visual features
required for terrain classification with increased efficiency. Results concerning this aspect
have been published in cooperation with G. Zolynski [Zolynski 08]. The obtained speedup
of more than a factor of 13 revealed the potential of this type of optimization and revealed
a possible way to make the traversability estimation executable during robot motion.

The good performance of the appearance-based image classification and the online learning
scheme was validated by experiments measuring the classification accuracies for a set of
typical outdoor images. Also, the fault liability, time stability and confidence distribution
of the classification method were evaluated. Research results related to this have been
published in [Braun 08c| and [Rauber 08].

7.2 Evaluation of the Proposed Global Navigation
Methodology

The global navigation system proposed in this thesis reveals a viable new way to perform
cost-efficient path planning using the proposed metrical / topological hybrid map struc-
ture. At the same time, the need to build and maintain a fine-grained, global world model
which would reduce the scalability of the approach is avoided. These results support the
initial hypothesis that a scalable yet cost-efficient navigation system can be designed by
striking a balance between the two well established types of purely metrical or topological
navigation systems.

The combination of the proposed hybrid world model, the multi-dimensional cost measure
and the a posteriori learning of costs through self-observation provides a significant ben-
efit for efficient navigation in an approximately known environment. In such a scenario,
the navigator can autonomously build up cost estimates for the topological edges and
gradually optimize path selection. Possible applications that can benefit from these capa-
bilities include repetitive transportation tasks (e.g. on construction sites), border patrols
or the continuous monitoring of environmentally relevant parameters in a large, vegetated
environment.

It was shown that self-observation indeed allows to reuse domain knowledge invested in
a local navigation layer and produce travel cost information at a higher level of abstrac-
tion. The presented strategy complements the ‘near-to-far’ learning methods which have
been proposed by other researchers before to transfer sensor related knowledge from close
range to long range sensors. These methods are similar in spirit to the transfer of cost
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information in the domain of the world representation, but the work conducted in this
thesis covers the results of sensor interpretation, rather than the interpretation itself.
In summary, the obtained results strongly suggest that the idea of self-observation is a
very general concept, which should be explored further to improve the adaptability of
additional aspects of robotic systems.

Cost-efficient navigation in unknown territory is advanced by the research documented
in the second part of this thesis. The methods which were proposed to predict costs of
new connections through traversability analysis respectively cost extrapolation introduce
several novel techniques to this field of research. The methods that estimate costs based on
the existing topological map can provide highly accurate cost modifiers in well connected
map regions. Likewise, the prediction technique which reuses the obstacle memory of
the local pilot can estimate costs well close to topological nodes. Both methods are fast
enough to be used continuously.

The two traversability analysis method which use a long range visual sensor dedicated
specifically to this task require more processing time, but cover a much larger area. Their
use ultimately enables more foresighted exploration decision at critical locations. Both
methods complement each other. While the shape-based analysis excels at determining
terrain slopes and hence is able to yield accurate predictions for the effort cost factor, the
appearance-based technique is better suited for the discrimination of flexible and inflexible
vegetation, which reflects more strongly in the risk cost component.

The conducted experiments support the claim that the developed approach is able to ex-
plore routes towards a goal for which no a priori map exists. The presented cost prediction
techniques allow the navigation system to place new topological nodes in directions that
appear well traversable. If this does not produce a feasible path to the goal position, the
topological map allows to backtrack and attempt a different route. Asides from simula-
tion results, an account for the approach’s performance has been given during the highly
successful ELROB 2008 trials.

Of course, the researched methods also exhibit drawbacks. For one thing, arrival detec-
tion at a topological node and the entire piloting sublayer still depends on a (coarse)
knowledge of the robot’s own global position. Therefore, robot operation entirely without
GPS is not possible at the moment. Although normal foilage allows sufficient accuracy
for the coarse localization required, denser (rain-)forests or military applications require
alternative strategies.

Also, the presented cost learning scheme assumes that the robot’s pilot generates trajecto-
ries which are at least somewhat comparable with each other across different traversals of
the same topological edge. While this is frequently the case, there exist situations where
a single decision (such as turning to the left or right in front of an obstacle) alters the re-
sulting trajectory profoundly. The costs of such edges are difficult to estimate consistently
with the current approach and the proposed cost prediction method may fail.

Furthermore, the proposed exploration and cost prediction methods can also be improved
at various places. All predictions suffer from not knowing ezactly where the robot will
actually drive once commanded to move. This is the price to be paid for abstracting from
the local obstacle avoidance problems on the global navigation level and letting the some-
what unpredictable pilot do the ground work. A more predictable local navigation is thus
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highly desirable. Additionally, the shape-based modeling approach suffers from the inabil-
ity to cope with overhanging objects and the unavoidable stereo matching unreliability.
The appearance-based technique loses a substantial amount of precision due to the coarse
unsupervised segmentation stage and needs to be put on a more rigorous mathematical
foundation to increase the expressive power of the estimated confidence measures.

7.3 Future Perspectives

Many aspects of the presented global navigation strategy can be further improved. Some
of the shortcomings that became apparent in the experimental validation can be ad-
dressed rather quickly. For one, the speed of the visual terrain analysis steps can be
increased significantly by integrating already existing methods for sparse and dense stereo
reconstruction using a GPU. Also, the k-NN classification stage of the appearance-based
analysis can be sped up using appropriate distance measures and efficient data structures
such as kd-trees. For the shape-based method, the capability to handle overhangs is vital
once the system is used in denser forests. The required modifications are straightforward
to implement and have already been sketched out in section 5.4. For the appearance-
based method, the calculated confidence scores should be transformed into probabilities
in a mathematically sound way so that the resulting cost modifiers become accessible to
a more thorough analysis.

Apart from the sensor analysis methods, the cost learning and prediction methods would
benefit greatly from an extensive, long-term experiment using the real robot in a real
environment. Although no methodical difficulties are expected, the obtained research
results would be strengthened by using real test data instead of the simulation. However,
such an extensive test imposes a lot of stress on the prototypical robot and is likely to
cause failures in the already very run-down electric actuators. Therefore, the testing phase
needs to be preceded by an overhauling of these parts.

On a long term, the integration of the global navigator and the local pilot should be
improved. For example, a mechanism to recognize navigation-relevant places and passages
could be added to the local pilot which interprets the local memory build during robot
operation. Once a significant feature is detected, this mechanism could then signal the
navigator, which can add new topological nodes or connections at the appropriate place.
This would greatly improve the up-to-now only rudimentarily developed map extension
capabilities. In this context, it would also be interesting to research methods which trigger
the full sensor usage at critical locations. The usage of the time consuming terrain analysis
methods could then be restricted to navigation decisions which really require that much
information - in other cases, the other cost extrapolation methods might be sufficient.

The detection of locations which are relevant or even critical for navigation is just one
example for a much more diverse area of future research. This area encompasses the
extraction of further, semantically meaningful data from the available sensor information.
Using more sophisticated pattern recognition techniques, the robot could classify obstacles
or situations using labels such as a ‘fallen tree’ or ‘a pathway in the forest’ which could be
translated into more accurate cost predictions on the on side, or into specialized behaviors
to handle the specific navigation requirements of that situation.

The most profound possibilities to continue work on the navigation system address the
core problem of the cost extrapolation and a posteriori learning scheme, the unpredictabil-
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ity of the behavior-based piloting system. Several methods to improve the repeatability
of emerging trajectories could be investigated. One possibility would be to construct an
intermediate layer between the navigator and the pilot and plan short trajectory pieces
based on the local obstacle memory of the pilot. Along with a way to ensure trajectory
continuity, this would give the piloting system more foresight and could remove unnec-
essary ranking or inappropriate turning maneuvers. Another interesting course of action
would be to detect edges that exhibit unpredictable trajectories (based on the spread of
the costs, for example) and provide additional ‘hints’ to the pilot, such as: ‘if you en-
counter an obstacle in about 5 meters, try to pass it on the left side’. The generation of
these hints could be effected by analysis of the set of trajectories that has been produced
so far for the edge. If several trajectory clusters can be identified, this could also be
represented in the map by splitting the edge and annotating it with different hints.

Asides from the closely navigation related tasks, the self-localization of the robot could be
made independent of the GPS sensor system. To compensate this, a sensor based (visual)
method to recognize topological places and home in towards a distinct metrical location
within that place is required. A working technique could be used as a fall-back mechanism
if the GPS signal is too weak or otherwise unusable.

In the far future, one could also imagine the deployment of the presented global naviga-
tion system on a more maneuverable robot (such as a walking robot, for example) instead
of the current wheeled system. This could provide an enormous advantage especially for
rescue missions in disaster areas, where terrain is often too rugged for the established
locomotion systems. In this regard, the high adaptability of the presented global naviga-
tion methodology and the generalizable self-observation methodology are a great boon, as
both features simplify the transition to such a different physical platform substantially.
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A. The SimVis3D Simulation and
Visualization Framework

During the work on the large-scale navigation system presented in this thesis, it became
apparent that a sophisticated simulation of the system behavior is required to reduce
development time and test new approaches under repeatable conditions. Also, a good
wisualization of the current situation was sought to improve the understanding of the
robot’s behavior.

Because commercially available toolkits did not provide enough support to cover the simu-
lation and visualization of all aspects relevant to the thesis, the SimVis3D framework was
developed. SimVis3D is designed as a modular framework usable both for the simulation of
optical sensor-systems like cameras or laser scanners and the visualization of spatial infor-
mation such as topological graphs. Besides providing basic functionality to construct and
parametrize three-dimensional scenarios, the framework offers strong extensibility through
a mechanism that allows to easily add new, manually coded components. Furthermore,
SimVis3D can also handle input from multiple client computers. The framework is built
on top of the widely used 3D rendering library Coin3D, which is API-compatible to Open
Inventor. Both rely on OpenGL for the actual rendering process and use a scene graph
to store and structure graphical elements.

The design of SimVis3D is flexible enough to allow its use in many other applications
besides the purposes of this thesis. In the robotics research lab, SimVis3D is actively used
for the simulation and visualization of an indoor robot system, a walking machine and
a humanoid robot. The framework is described extensively in [Braun 07]. The next two
sections summarize the key points of this publication.

A.1 Scene Construction

The SimVis3D framework constructs a visual scene using a XML based description file
supplied by the user (fig. A.l1 shows an example). Each line contains either a part,
element or sensor command.

The part command adds a new scene graph stored in a separate file to the current scene.
Parts define the basic geometry of individual objects such as robots, obstacles or the
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<part file="world.iv" name="WORLD" attached_to="ROOT" pose_offset=
"0O00O0O0O0" />
<part file="robot.iv" name="ROBOT" attached_to="WORLD" pose_offset=
"0O0O0O0O0O0" />
<element type="pose" name="R_POSE" attached_to="ROBOT" x="1" y="2"
z=|l3’| r011=lIOll pitch=llOll yaw=l|_90|l />
<sensor type='"camera" name="R_CAM" attached_to="ROBOT" pose_offset=
"3 0500 0" />

Figure A.1: Example XML based scene description

static environment. New parts can be added to the existing scene at insertion point
nodes in the scene graph. Optionally, it is possible to supply a static offset to the insertion
point using the pose_offset attribute. Each part command creates a new insertion point
(named as the part itself) in it’s local coordinate frame. With this mechanism, it is very
easy to nest parts and create a hierarchical scene. This allows the user to specify relations
between objects, i.e. parts that are physically attached to another (in the example, the
camera R_CAM is attached to the robot ROBOT which in turn is positioned relative to the
WORLD, which is anchored at the predefined simulation origin ROOT).

The element command instantiates a scene modification object whose class is specified
by the element name. The object is then free to extract any further configuration data
from the XML command and modify the scene graph in any way it sees fit (it generally
adds nodes to the scene graph at the insertion point). It is important to stress that all
modifications are encapsulated inside the object; the SimVis3D framework is unaware of
the element’s internal workings. The only interface between them are named parameters
exported by the element, which are floating-point scalar values that can be modified by
the framework. If parameters change, the scene graph updates are carried out solely by
the instantiated element. In the example in figure A.1, the third line adds an element
which exports six parameters x, y, z, roll, pitch, yaw to the framework and uses their
value to modify the pose of the robot relative to its insertion point, e.g. the WORLD.

The sensor command includes simulated sensors in the scene, for example a camera
attached to a robot. Employing the same mechanism as the instantiation of elements, the
sensor command creates a sensor object of the requested type at the given insertion point.
Line 4 in figure A.1 creates a camera attached to the robot with a static offset relative to
the robot’s local coordinate frame.

This component based architecture allows users to extend SimVis3D with almost any
desired interaction capability by implementing a custom element or sensor class and reg-
istering it to the object factory. The encapsulation guarantees that no changes to other
components of SimVis3D are required.

A.2 Interfacing with SimVis3D

SimVis3D explicitly supports input data from different processes or even different phys-
ical machines. The data transport between computers is done via standard interprocess
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communication (IPC) using e.g. shared memory or named pipes. SimVis3D was designed
to be easily adaptable to a variety of these techniques by offering a very simple interface.

This interface consists of four data arrays, stored compactly in memory. The arrays con-
tain:

1. structs of element descriptors
2. floating-point parameter values
3. strings forming a scene change request log

4. strings forming a scene change log

Figure A.2 shows the interfaces produced by the example from fig. A.1.

SimVis3D Host Computer

} Sensor
|
. . d

: SimVis3D Hender ~ ROBOT_CAM
| :
: Read 1
i Write Read e Write }
1 Change 3
| Param. Request |
l Element Descriptors Values Log Change Log ;
|

| struct { 1.0 i
} name: R_POSE 2'0 |
l insert: ROBOT 3' 0 <part file="world.iv”... :
l params: X,Y,Z 0' 0 <part file="robot.iv”... !
} params: ROLL 0' 0 <element name="pose” ;
} params: PIT., YAW : <sensor type="camera” !
; 3 . -90.0 ‘
i index: 0 |
L }”. M o _ _ L _

;I, \\\‘ "’, ‘\ NN“‘\ \\\
C / N )
¥ .7 RPN TTteln 9
Remote Process A Remote Process B Remote Process C
’ Calc. position data‘ ’ Calc. orientation data‘ ’ External visualization ‘

Figure A.2: The four remote access interfaces provided by SimVis3D

The element descriptor interface contains all information required to identify a specific
element in the current scene and locate their parameter values. For each element, the
interface array stores the element’s name and insertion point, the number and names of
its parameters and most importantly, the starting index of the parameter values in the
parameter values interface array. This second array is a simple vector of the current
values of all element parameters. With (remote) access to these two interface arrays,
any process can update the parameters of every element. For example, process A in
figure A.2 can calculate the robot position based on various sensors, locate the R_POSE
element by scanning the element descriptors interface, extract the index of the position
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parameters and write the calculated robot position into the parameter values array at
the right place. Process B (executed on a different machine) can do the same with the
orientation part of the robot pose. The reason to split the element descriptors and the
actual values into two arrays is efficiency: After looking up the exact array index of a
parameter value once, the client process can then manipulate the float values directly,
reducing data transfer to the SimVis3D host process enormously.

While the first two arrays allow the manipulation of existing elements, the other two inter-
faces permit external processes to add new components or track these structural changes.
In order to add a new scene component, a client can write XML commands similar to
those given in figure A.1 to the scene change request log. The framework then exe-
cutes them and confirms this by adding the XML strings to the scene change log. This
mechanism allows remote clients to request the addition or removal of elements or parts
during runtime. It also permits the construction of an identical scene by simply repeating
all commands stored in the change log on a local scene graph. Thereby, an external
client can render the same scene as is used for simulation from a different viewpoint for
visualization purposes, or even exclusively render a scene that is only set up by the host
machine but not rendered there. With this approach, SimVis3D supports both visual
sensor simulation and visualization tasks seamlessly within the same basic framework.
Process C in figure A.2 illustrates an example of such a use. All visualizations of the
maps and navigation situations of RAVON displayed throughout the thesis are actually
created using this setup.

A.3 Simulation of the RAVON Scenario

The software of the RAVON platform uses visual information from color cameras for
stereo reconstruction, obstacle detection and visual odometry. In order to simulate these
cameras, an outdoor scene similar to the standard testing area of the experimental plat-
form was modeled using detailed obstacle geometries and high resolution textures. Figure
A.3 shows a panoramic reconstruction of the real testing ground and a screenshot of the
corresponding simulation scenario. A pair of corresponding positions is indicated by the
black arrow.

(a) Real testing field (b) Corresponding simulation scene

Figure A.3: Real and simulated testing ground

To validate the adequacy of the camera simulation, images taken with the real robots
stereo camera system were compared with images generated with virtual cameras in sim-
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ulation. Figure A.4 shows a pair of real and simulated images along with disparity maps
derived from them. The images depict the typical performance of the stereo algorithm. In

Figure A.4: Stereo reconstruction of real and simulated camera images
The disparity maps (right side) generated by stereo analysis of real (upper row) and simulated (lower
row) camera images are very similar.

both cases, the stereo matching algorithm used in the RAVON project was used without
any adjustments. The results demonstrate that the simulation is sufficient for stereo re-
construction and allows the image analysis algorithm to achieve realistic results. Similar
experiments performed for the visual odometry computation led to the same conclusion.

Laser Scanners

The simulation of the three laser scanners on RAVON was realized by adding a distance
sensor class to the SimVis3D framework. This class computes distance values between
a given sensor center and the closest scene objects. Figure A.5 shows a visualization of
the distance measures obtained by the frontal, horizontal scanner. The 3D scene depicts
the overall terrain layout and highlights the direction of each distance measurement using
red rays originating at the scanner position. The overlay on the lower left shows a 2D
visualization of the distances as received by the robot’s control software.

The sensor implementation evaluates the depth buffer used by the graphics hardware to
render the scenario for a virtual camera placed at the scanner position. The produced
color image is discarded, but the contents of the depth buffer is transformed into the
required distance measurements. Using this technique, the GPUs high rendering speed is
exploited and time consuming intersection calculations between scanner rays and the scene
geometry are avoided. Thus, all three scanners on RAVON can easily be simulated at a
rate of 30 Hz. Gaussian noise is added to the distance values to mimic the measurement
inaccuracies of the real scanners. This simulation turned out to be relatively realistic for
non-specular surfaces, which are predominant in outdoor environments. It does not suffice
to model ice, water or other reflective surfaces.
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Figure A.5: Laser scanner simulation

Actuation System

The actuation system of RAVON and the interaction between the robot and the ground
are simulated using an approximated physical model which essentially reflects the depen-
dencies between physical forces correctly, but performs strong simplifications of the real
physics involved. This was done due to the lack of a suitable physical simulation engine
able to simulate wheel frictions at the time of SimVis3D’s implementation.

In the physical model used in the scope of this thesis, the four wheel actuators of RAVON
are simulated on the level of their DSP-based motor controllers. The real CAN connection
is redirected to virtual controllers that offer the same interfaces as the real ones and
implement the same motor control algorithm. However, the computed PWM output of
each motor controller is transformed into a motor rotation speed (and thus encoder ticks,
which are reported back to the control software) using an approximated motor model. It
is based on the basic motor equation shown in eq. A.1. The equation states that the
average voltage Uy, ‘seen’ by the motor due to the applied PWM signal is equal to the
back-induced voltage U;,q that results from the motor’s current revolving speed plus the
current I flowing through the motor times its internal resistance R.

Upwm = Uind + IR (Al)

Exploiting the facts that Uy, is proportional to the PWM signal with strength P, Ujpnq
is proportional to the motor speed v and [ is proportional to the torque M generated by
the actuator, this can be reformulated to:

v = P — c3M, (A.2)

with proportionality constants ci, ¢y, c3. Furthermore, neglecting the acceleration and
deceleration phases of the robot (which are quite short in reality) and force components
not parallel to the wheel’s rolling direction, it can be assumed that the torque exerted by
the motor is equal to the torque M, resulting from the rolling resistance F). of the wheels
plus the torque M, caused by the downhill force F; that is introduced by the robot’s
weight on sloped terrain:

M = M, + M, (A.3)
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The physical laws of rolling friction and downhill force state that F, is proportional to
the cosine of the robot’s roll angle «, while F}; is proportional to its sine value. However,
because the robot’s actuation system is very elastic and the terrain is typically very soft,
the decrease of the rolling resistance with increasing roll angle of the robot was deemed
negligible. Thus, F,. is assumed to be constant with respect to o. This leads to:

M = ¢4+ cssina (A.4)

Combining equations A.2 and A.4 and substituting products of proportionality constants
with new constants ¢}, ¢}, c;, the relation between motor speed v and set PWM value P
can be approximated using the following equation:

v="CcP—cy—dysina (A.5)

These three proportionality coefficients were determined heuristically so that the resulting
PWM / speed pairs matched the results of three test runs of the real RAVON system on
flat terrain and two ramps with slopes of approximately 10° and 15°.

Robot Pose Simulation

After each simulation step of the motor controllers, the new robot pose in the simulation
scene is computed. This is done by estimating the new wheel positions using the current
wheel speeds and a kinematic model. The estimated wheel positions are then corrected so
that the wheels have contact with the surface mesh of the simulated terrain. Internally,
this is accomplished using a distance sensor directly overhead the robot which determines
the distances between estimates wheel position and the surface.

Current Sensor Simulation

The current sensors of the motor controllers are simulated in a physically plausible way
using equation A.1. Rearranging the equation and introducing proportionality constants
yields:

I=dP—cv (A.6)

Again, the proportionality coefficients have been estimated so that the simulated currents
approximate the real motor currents measured in the three test runs.

Scene Visualization

A separate instance of SimVis3D is used to visualize the robot’s situation and the current
navigation map. In the scope of this thesis, custom elements have been developed to show
coordinate systems, topological map nodes, edges and local traversability maps. Figures
A.6 and A.7 present examples of these components.
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Figure A.7: Visualization of a local traversability map
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