## Bericht

### Filtern

#### Fachbereich / Organisatorische Einheit

#### Erscheinungsjahr

- 2004 (19) (entfernen)

#### Dokumenttyp

- Bericht (19) (entfernen)

#### Schlagworte

- Inverses Problem (2)
- MAC type grid (2)
- Wavelet (2)
- multilayered material (2)
- poroelasticity (2)
- Abstract linear systems theory (1)
- Ambient Intelligence (1)
- Bartlett spectrum (1)
- Biot-Savart Operator (1)
- Biot-Savart operator (1)

- Embedding a Chained Lin-Kernighan Algorithm into a Distributed Algorithm (2004)
- The Chained Lin-Kernighan algorithm (CLK) is one of the best heuristics to solve Traveling Salesman Problems (TSP). In this paper a distributed algorithm is proposed, were nodes in a network locally optimize TSP instances by using the CLK algorithm. Within an Evolutionary Algorithm (EA) network-based framework the resulting tours are modified and exchanged with neighboring nodes. We show that the distributed variant finds better tours compared to the original CLK given the same amount of computation time. For instance fl3795, the original CLK got stuck in local optima in each of 10 runs, whereas the distributed algorithm found optimal tours in each run requiring less than 10 CPU minutes per node on average in an 8 node setup. For instance sw24978, the distributed algorithm had an average solution quality of 0.050% above the optimum, compared to CLK's average solution of 0.119% above the optimum given the same total CPU time (104 seconds). Considering the best tours of both variants for this instance, the distributed algorithm is 0.033% above the optimum and the CLK algorithm 0.099%.

- Frequency Filtering in Telecommunications (2004)
- Piezoelectric filters are used in telecommunication to filter electrical signals. This report deals with the problem of calculating passing and damped frequency intervals for a filter with given geometrical configurations and materials. Only periodic filters, which are widely used in practice, were considered. These filters consist of periodically arranged cells. For a small amount of cells a numerical procedure to visualise the wave propagation in the filter was developed. For a big number of cells another model of the filter was obtained. In this model it is assumed that the filter occupies an infinite domain. This leads to a differential equation, with periodic coefficients, that describes propagation of the wave with a given frequency in the filter. To analyse this equation the Spectral Theory for Periodic Operators had to be employed. Different ways -- analytical and numerical -- to apply the theory were proposed and analysed.

- On convergence of certain finite difference discretizations for 1D poroelasticity interface problems (2004)
- Finite difference discretizations of 1D poroelasticity equations with discontinuous coefficients are analyzed. A recently suggested FD discretization of poroelasticity equations with constant coefficients on staggered grid, [5], is used as a basis. A careful treatment of the interfaces leads to harmonic averaging of the discontinuous coefficients. Here, convergence for the pressure and for the displacement is proven in certain norms for the scheme with harmonic averaging (HA). Order of convergence 1.5 is proven for arbitrary located interface, and second order convergence is proven for the case when the interface coincides with a grid node. Furthermore, following the ideas from [3], modified HA discretization are suggested for particular cases. The velocity and the stress are approximated with second order on the interface in this case. It is shown that for wide class of problems, the modified discretization provides better accuracy. Second order convergence for modified scheme is proven for the case when the interface coincides with a displacement grid node. Numerical experiments are presented in order to illustrate our considerations.

- Diffraction by image processing and its application in materials science (2004)
- A spectral theory for constituents of macroscopically homogeneous random microstructures modeled as homogeneous random closed sets is developed and provided with a sound mathematical basis, where the spectrum obtained by Fourier methods corresponds to the angular intensity distribution of x-rays scattered by this constituent. It is shown that the fast Fourier transform applied to three-dimensional images of microstructures obtained by micro-tomography is a powerful tool of image processing. The applicability of this technique is is demonstrated in the analysis of images of porous media.

- Mathematics as a Technology: Challenges for the next 10 Years (2004)
- No doubt: Mathematics has become a technology in its own right, maybe even a key technology. Technology may be defined as the application of science to the problems of commerce and industry. And science? Science maybe defined as developing, testing and improving models for the prediction of system behavior; the language used to describe these models is mathematics and mathematics provides methods to evaluate these models. Here we are! Why has mathematics become a technology only recently? Since it got a tool, a tool to evaluate complex, "near to reality" models: Computer! The model may be quite old - Navier-Stokes equations describe flow behavior rather well, but to solve these equations for realistic geometry and higher Reynolds numbers with sufficient precision is even for powerful parallel computing a real challenge. Make the models as simple as possible, as complex as necessary - and then evaluate them with the help of efficient and reliable algorithms: These are genuine mathematical tasks.

- Regularized Multiresolution Recovery of the Mass Density Distribution From Satellite Data of the Earth´s Gravitational Field (2004)
- The inverse problem of recovering the Earth's density distribution from data of the first or second derivative of the gravitational potential at satellite orbit height is discussed for a ball-shaped Earth. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbitheight is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG (satellite gravity gradiometry) satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust. Moreover, the noise sensitivity of the regularization technique is analyzed numerically.

- On numerical solution of 1-D poroelasticity equations in a multilayered domain (2004)
- In soil mechanics assumption of only vertical subsidence is often invoked and this leads to the one-dimensional model of poroelasticity. The classical model of linear poroelasticity is obtained by Biot [1], detailed derivation can be found e.g., in [2]. This model is applicable also to modelling certain processes in geomechanics, hydrogeology, petroleum engineering (see, e.g., [3, 8], in biomechanics (e.g., [9, 10]), in filtration (e.g., filter cake formation, see [15, 16, 17]), in paper manufacturing (e.g., [11, 12]), in printing (e.g., [13]), etc. Finite element and finite difference methods were applied by many authors for numerical solution of the Biot system of PDEs, see e.g. [3, 4, 5] and references therein. However, as it is wellknown, the standard FEM and FDM methods are subject to numerical instabilities at the first time steps. To avoid this, discretization on staggered grid was suggested in [4, 5]. A single layer deformable porous medium was considered there. This paper can be viewed as extension of [4, 5] to the case of multilayered deformable porous media. A finite volume discretization to the interface problem for the classical one-dimensional Biot model of consolidation process is applied here. Following assumptions are supposed to be valid: each of the porous layers is composed of incompressible solid matrix, it is homogeneous and isotropic. Furthermore, one of two following assumptions is valid: porous medium is not completely saturated and ﬂuid is incompressible or porous medium is completely saturated and fluid is slightly compressible. The reminder of the paper is organised as follows. Next section presents the mathematical model. Third section is devoted to the dicsretization of the continuous problem. Fourth section contains the results from the numerical experiments.

- Fluid structure interaction problems in deformable porous media: Toward permeability of deformable porous media (2004)
- In this work the problem of fluid flow in deformable porous media is studied. First, the stationary fluid-structure interaction (FSI) problem is formulated in terms of incompressible Newtonian fluid and a linearized elastic solid. The flow is assumed to be characterized by very low Reynolds number and is described by the Stokes equations. The strains in the solid are small allowing for the solid to be described by the Lame equations, but no restrictions are applied on the magnitude of the displacements leading to strongly coupled, nonlinear fluid-structure problem. The FSI problem is then solved numerically by an iterative procedure which solves sequentially fluid and solid subproblems. Each of the two subproblems is discretized by finite elements and the fluid-structure coupling is reduced to an interface boundary condition. Several numerical examples are presented and the results from the numerical computations are used to perform permeability computations for different geometries.

- Simulating Human Resources in Software Development Processes (2004)
- In this paper, we discuss approaches related to the explicit modeling of human beings in software development processes. While in most older simulation models of software development processes, esp. those of the system dynamics type, humans are only represented as a labor pool, more recent models of the discrete-event simulation type require representations of individual humans. In that case, particularities regarding the person become more relevant. These individual effects are either considered as stochastic variations of productivity, or an explanation is sought based on individual characteristics, such as skills for instance. In this paper, we explore such possibilities by recurring to some basic results in psychology, sociology, and labor science. Various specific models for representing human effects in software process simulation are discussed.

- Algebraic Systems Theory (2004)
- Control systems are usually described by differential equations, but their properties of interest are most naturally expressed in terms of the system trajectories, i.e., the set of all solutions to the equations. This is the central idea behind the so-called "behavioral approach" to systems and control theory. On the other hand, the manipulation of linear systems of differential equations can be formalized using algebra, more precisely, module theory and homological methods ("algebraic analysis"). The relationship between modules and systems is very rich, in fact, it is a categorical duality in many cases of practical interest. This leads to algebraic characterizations of structural systems properties such as autonomy, controllability, and observability. The aim of these lecture notes is to investigate this module-system correspondence. Particular emphasis is put on the application areas of one-dimensional rational systems (linear ODE with rational coefficients), and multi-dimensional constant systems (linear PDE with constant coefficients).