## Bericht

### Filtern

#### Fachbereich / Organisatorische Einheit

#### Erscheinungsjahr

#### Dokumenttyp

- Bericht (240) (entfernen)

#### Sprache

- Englisch (240) (entfernen)

#### Schlagworte

- numerical upscaling (6)
- Elastoplastizität (4)
- modelling (4)
- poroelasticity (4)
- Darcy’s law (3)
- Dienstgüte (3)
- Elastic BVP (3)
- Elastoplasticity (3)
- Hysterese (3)
- Mathematikunterricht (3)

- Transit Dependent Evacuation Planning for Kathmandu Valley: A Case Study (2014)
- Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered. In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.

- Investigate the hardware description language Chisel - A case study implementing the Heston model (2013)
- This paper presents a case study comparing the hardware description language „Constructing Hardware in a Scala Embedded Language“(Chisel) to VHDL. For a thorough comparison the Heston Model was implemented, a stochastic model used in financial mathematics to calculate option prices. Metrics like hardware utilization and maximum clock rate were extracted from both resulting designs and compared to each other. The results showed a 30% reduction in code size compared to VHDL, while the resulting circuits had about the same hardware utilization. Using Chisel however proofed to be difficult because of a few features that were not available for this case study.

- Investigate the high-level HDL Chisel (2013)
- Chisel (Constructing Hardware in a Scala embedded language) is a new programming language, which embedded in Scala, used for hardware synthesis. It aims to increase productivity when creating hardware by enabling designers to use features present in higher level programming languages to build complex hardware blocks. In this paper, the most advertised features of Chisel are investigated and compared to their VHDL counterparts, if present. Afterwards, the authors’ opinion if a switch to Chisel is worth considering is presented. Additionally, results from a related case study on Chisel are briefly summarized. The author concludes that, while Chisel has promising features, it is not yet ready for use in the industry.

- Construction of discrete shell models by geometric finite differences (2012)
- In the presented work, we make use of the strong reciprocity between kinematics and geometry to build a geometrically nonlinear, shearable low order discrete shell model of Cosserat type defined on triangular meshes, from which we deduce a rotation–free Kirchhoff type model with the triangle vertex positions as degrees of freedom. Both models behave physically plausible already on very coarse meshes, and show good convergence properties on regular meshes. Moreover, from the theoretical side, this deduction provides a common geometric framework for several existing models.

- Integration of nonlinear models of flexible body deformation in Multibody System Dynamics (2012)
- A simple transformation of the Equation of Motion (EoM) allows us to directly integrate nonlinear structural models into the recursive Multibody System (MBS) formalism of SIMPACK. This contribution describes how the integration is performed for a discrete Cosserat rod model which has been developed at the ITWM. As a practical example, the run-up of a simplified three-bladed wind turbine is studied where the dynamic deformations of the three blades are calculated by the Cosserat rod model.

- Geometrically exact Cosserat rods with Kelvin-Voigt type viscous damping (2012)
- We present the derivation of a simple viscous damping model of Kelvin–Voigt type for geometrically exact Cosserat rods from three–dimensional continuum theory. Assuming a homogeneous and isotropic material, we obtain explicit formulas for the damping parameters of the model in terms of the well known stiffness parameters of the rod and the retardation time constants defined as the ratios of bulk and shear viscosities to the respective elastic moduli. We briefly discuss the range of validity of our damping model and illustrate its behaviour with a numerical example.

- Multi-level Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations (2012)
- In this paper, we propose multi-level Monte Carlo(MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multi-phase flow and transport. The main idea of ensemble level multiscale methods is to construct local multiscale basis functions that can be used for any member of the ensemble. We consider two types of ensemble level mixed multiscale finite element methods, (1) the no-local-solve-online ensemble level method (NLSO) and (2) the local-solve-online ensemble level method (LSO). Both mixed multiscale methods use a number of snapshots of the permeability media to generate a multiscale basis. As a result, in the offline stage, we construct multiple basis functions for each coarse region where basis functions correspond to different realizations. In the no-local-solve-online ensemble level method one uses the whole set of pre-computed basis functions to approximate the solution for an arbitrary realization. In the local-solve-online ensemble level method one uses the pre-computed functions to construct a multiscale basis for a particular realization. With this basis the solution corresponding to this particular realization is approximated in LSO mixed MsFEM. In both approaches the accuracy of the method is related to the number of snapshots computed based on different realizations that one uses to pre-compute a multiscale basis. We note that LSO approaches share similarities with reduced basis methods [11, 21, 22]. In multi-level Monte Carlo methods ([14, 13]), more accurate (and expensive) forward simulations are run with fewer samples while less accurate(and inexpensive) forward simulations are run with a larger number of samples. Selecting the number of expensive and inexpensive simulations carefully, one can show that MLMC methods can provide better accuracy at the same cost as MC methods. In our simulations, our goal is twofold. First, we would like to compare NLSO and LSO mixed MsFEMs. In particular, we show that NLSO mixed MsFEM is more accurate compared to LSO mixed MsFEM. Further, we use both approaches in the context of MLMC to speed-up MC calculations. We present basic aspects of the algorithm and numerical results for coupled flow and transport in heterogeneous porous media.

- A direction splitting approach for incompressible Brinkmann flow (2012)
- The direction splitting approach proposed earlier in [6], aiming at the efficient solution of Navier-Stokes equations, is extended and adopted here to solve the Navier-Stokes-Brinkman equations describing incompressible flows in plain and in porous media. The resulting pressure equation is a perturbation of the incompressibility constrained using a direction-wise factorized operator as proposed in [6]. We prove that this approach is unconditionally stable for the unsteady Navier-Stokes-Brinkman problem. We also provide numerical illustrations of the method's accuracy and efficiency.

- Statistical RNA Secondary Structure Sampling Based on a Length-Dependent SCFG Model (2012)
- One of the fundamental problems in computational structural biology is the prediction of RNA secondary structures from a single sequence. To solve this problem, mainly two different approaches have been used over the past decades: the free energy minimization (MFE) approach which is still considered the most popular and successful method and the competing stochastic context-free grammar (SCFG) approach. While the accuracy of the MFE based algorithms is limited by the quality of underlying thermodynamic models, the SCFG method abstracts from free energies and instead tries to learn about the structural behavior of the molecules by training the grammars on known real RNA structures, making it highly dependent on the availability of a rich high quality training set. However, due to the respective problems associated with both methods, new statistics based approaches towards RNA structure prediction have become increasingly appreciated. For instance, over the last years, several statistical sampling methods and clustering techniques have been invented that are based on the computation of partition functions (PFs) and base pair probabilities according to thermodynamic models. A corresponding SCFG based statistical sampling algorithm for RNA secondary structures has been studied just recently. Notably, this probabilistic method is capable of producing accurate (prediction) results, where its worst-case time and space requirements are equal to those of common RNA folding algorithms for single sequences. The aim of this work is to present a comprehensive study on how enriching the underlying SCFG by additional information on the lengths of generated substructures (i.e. by incorporating length-dependencies into the SCFG based sampling algorithm, which is actually possible without significant losses in performance) affects the reliability of the induced RNA model and the accuracy of sampled secondary structures. As we will see, significant differences with respect to the overall quality of generated sample sets and the resulting predictive accuracy are typically implied. In principle, when considering the more specialized length-dependent SCFG model as basis for statistical sampling, a higher accuracy of predicted foldings can be reached at the price of a lower diversity of generated candidate structures (compared to the more general traditional SCFG variant or sampling based on PFs that rely on free energies).

- Constitutive models for static granular systems and focus to the Jiang-Liu hyperelastic law (2012)
- Granular systems in solid-like state exhibit properties like stiffness dependence on stress, dilatancy, yield or incremental non-linearity that can be described within the continuum mechanical framework. Different constitutive models have been proposed in the literature either based on relations between some components of the stress tensor or on a quasi-elastic description. After a brief description of these models, the hyperelastic law recently proposed by Jiang and Liu [1] will be investigated. In this framework, the stress-strain relation is derived from an elastic strain energy density where the stable proper- ties are linked to a Drucker-Prager yield criteria. Further, a numerical method based on the finite element discretization and Newton- Raphson iterations is presented to solve the force balance equation. The 2D numerical examples presented in this work show that the stress distributions can be computed not only for triangular domains, as previoulsy done in the literature, but also for more complex geometries. If the slope of the heap is greater than a critical value, numerical instabilities appear and no elastic solution can be found, as predicted by the theory. As main result, the dependence of the material parameter Xi on the maximum angle of repose is established.