## Report

### Refine

#### Faculty / Organisational entity

- Fachbereich Mathematik (42) (remove)

#### Year of publication

#### Document Type

- Report (42) (remove)

#### Keywords

- Mathematikunterricht (6)
- Modellierung (6)
- modelling (6)
- praxisorientiert (6)
- Elastoplastizität (4)
- Lineare Algebra (4)
- linear algebra (4)
- mathematical education (4)
- praxis orientated (4)
- Elastoplasticity (3)

- Transit Dependent Evacuation Planning for Kathmandu Valley: A Case Study (2014)
- Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered. In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.

- An online approach to detecting changes in nonlinear autoregressive models (2011)
- In this paper we develop monitoring schemes for detecting structural changes in nonlinear autoregressive models. We approximate the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression in both an offline as well as online setting, can be extended to this model. The proposed monitoring schemes reject (asymptotically) the null hypothesis only with a given probability but will detect a large class of alternatives with probability one. In order to construct these sequential size tests the limit distribution under the null hypothesis is obtained.

- Mathematical aspects of stress field simulations in deep geothermal reservoirs (2011)
- This report gives an insight into basics of stress field simulations for geothermal reservoirs. The quasistatic equations of poroelasticity are deduced from constitutive equations, balance of mass and balance of momentum. Existence and uniqueness of a weak solution is shown. In order of to find an approximate solution numerically, usage of the so–called method of fundamental solutions is a promising way. The idea of this method as well as a sketch of how convergence may be proven are given.

- The Multi Terminal q-FlowLoc Problem: A Heuristic (2011)
- In this paper the multi terminal q-FlowLoc problem (q-MT-FlowLoc) is introduced. FlowLoc problems combine two well-known modeling tools: (dynamic) network flows and locational analysis. Since the q-MT-FlowLoc problem is NP-hard we give a mixed integer programming formulation and propose a heuristic which obtains a feasible solution by calculating a maximum flow in a special graph H. If this flow is also a minimum cost flow, various versions of the heuristic can be obtained by the use of different cost functions. The quality of this solutions is compared.

- Reliable and Restricted Quickest Path Problems (2011)
- In a dynamic network, the quickest path problem asks for a path minimizing the time needed to send a given amount of flow from source to sink along this path. In practical settings, for example in evacuation or transportation planning, the reliability of network arcs depends on the specific scenario of interest. In this circumstance, the question of finding a quickest path among all those having at least a desired path reliability arises. In this article, this reliable quickest path problem is solved by transforming it to the restricted quickest path problem. In the latter, each arc is associated a nonnegative cost value and the goal is to find a quickest path among those not exceeding a predefined budget with respect to the overall (additive) cost value. For both, the restricted and reliable quickest path problem, pseudopolynomial exact algorithms and fully polynomial-time approximation schemes are proposed.

- Locally Supported Wavelets for the Separation of Spherical Vector Fields with Respect to their Sources (2011)
- We provide a space domain oriented separation of magnetic fields into parts generated by sources in the exterior and sources in the interior of a given sphere. The separation itself is well-known in geomagnetic modeling, usually in terms of a spherical harmonic analysis or a wavelet analysis that is spherical harmonic based. However, it can also be regarded as a modification of the Helmholtz decomposition for which we derive integral representations with explicitly known convolution kernels. Regularizing these singular kernels allows a multiscale representation of the magnetic field with locally supported wavelets. This representation is applied to a set of CHAMP data for crustal field modeling.

- Train Marshalling Problem - Algorithms and Bounds - (2010)
- The Train Marshalling Problem consists of rearranging an incoming train in a marshalling yard in such a way that cars with the same destinations appear consecutively in the final train and the number of needed sorting tracks is minimized. Besides an initial roll-in operation, just one pull-out operation is allowed. This problem was introduced by Dahlhaus et al. who also showed that the problem is NP-complete. In this paper, we provide a new lower bound on the optimal objective value by partitioning an appropriate interval graph. Furthermore, we consider the corresponding online problem, for which we provide upper and lower bounds on the competitiveness and a corresponding optimal deterministic online algorithm. We provide an experimental evaluation of our lower bound and algorithm which shows the practical tightness of the results.

- Min-Max Quickest Path Problems (2010)
- In a dynamic network, the quickest path problem asks for a path such that a given amount of flow can be sent from source to sink via this path in minimal time. In practical settings, for example in evacuation or transportation planning, the problem parameters might not be known exactly a-priori. It is therefore of interest to consider robust versions of these problems in which travel times and/or capacities of arcs depend on a certain scenario. In this article, min-max versions of robust quickest path problems are investigated and, depending on their complexity status, exact algorithms or fully polynomial-time approximation schemes are proposed.

- Dynamic Multi-Period Routing With Two Classes (2010)
- In the Dynamic Multi-Period Routing Problem, one is given a new set of requests at the beginning of each time period. The aim is to assign requests to dates such that all requests are fulfilled by their deadline and such that the total cost for fulling the requests is minimized. We consider a generalization of the problem which allows two classes of requests: The 1st class requests can only be fulfilled by the 1st class server, whereas the 2nd class requests can be fulfilled by either the 1st or 2nd class server. For each tour, the 1st class server incurs a cost that is alpha times the cost of the 2nd class server, and in each period, only one server can be used. At the beginning of each period, the new requests need to be assigned to service dates. The aim is to make these assignments such that the sum of the costs for all tours over the planning horizon is minimized. We study the problem with requests located on the nonnegative real line and prove that there cannot be a deterministic online algorithm with a competitive ratio better than alpha. However, if we require the difference between release and deadline date to be equal for all requests, we can show that there is a min{2*alpha, 2 + 2/alpha}-competitive algorithm.