## Preprint

### Filtern

#### Fachbereich / Organisatorische Einheit

#### Erscheinungsjahr

- 2000 (82) (entfernen)

#### Dokumenttyp

- Preprint (82) (entfernen)

#### Schlagworte

- AG-RESY (3)
- Deformable Objects (2)
- HANDFLEX (2)
- Manipulation (2)
- Robotics (2)
- Accounting (1)
- Algebraic Geometry (1)
- Approximation (1)
- Black-Scholes model (1)
- CAx (1)

- On Simpson Moduli Spaces of Stable Sheaves on P_2 with Linear Hilbert Polynomial (2000)
- In this short note we prove some general results on semi-stable sheaves on P_2 and P_3 with arbitrary linear Hilbert polynomial. Using Beilinson's spectral sequence, we compute free resolutions for this class of semi-stable sheaves and deduce that the smooth moduli spaces M_{r m + s}(P_2) and M_{r m + r - s}(P_2) are birationally equivalent if r and s are coprime.

- Homological Mirror Symmetry in Dimension One (2000)
- In this paper we complete the proof began by A. Polishchuk and E. Zaslow of a weak version of Kontsevich's symmetry conjecture for elliptic curves.

- Presentation of power-ordered sets (2000)
- Power-ordered sets are not always lattices. In the case of distributive lattices we give a description by disjoint of chains. Finite power-ordered sets have a polarity. We introduct the leveled lattices and show examples with trivial tolerance. Finally we give a list of Hasse diagrams of power-ordered sets.

- Hilbert Norms For Graded Algebras (2000)
- Abstract: This paper presents a solution to a problem from superanalysis about the existence of Hilbert-Banach superalgebras. Two main results are derived: 1) There exist Hilbert norms on some graded algebras (infinite-dimensional superalgebras included) with respect to which the multiplication is continuous. 2) Such norms cannot be chosen to be submultiplicative and equal to one on the unit of the algebra.

- Influence of center-of-mass correlations on spontaneous emission and Lamb shift in dense atomic gases (2000)
- Abstract: Local field effects on the rate of spontaneous emission and Lamb shift in a dense gas of atoms are discussed taking into account correlations of atomic center-of-mass coordinates. For this the exact retarded propagator in the medium is calculated in independent scattering approximation and employing a virtual-cavity model. The resulting changes of the atomic polarizability lead to modi cations of the medium response which can be of the same order of magnitude but of opposite sign than those due to local field corrections of the dielectric function derived by Morice, Castin, and Dalibard [Phys.Rev.A 51, 3896 (1995)].

- Dark-State Polaritons in Electromagnetically Induced Transparency (2000)
- Abstract: We identify form-stable coupled excitations of light and matter ("dark-state polaritons") associated with the propagation of quantum fields in Electromagnetically Induced Transparency. The properties of the dark-state polaritons such as the group velocity are determined by the mixing angle between light and matter components and can be controlled by an external coherent field as the pulse propagates. In particular, light pulses can be decelerated and "trapped" in which case their shape and quantum state are mapped onto metastable collective states of matter. Possible applications of this reversible coherent-control technique are discussed.

- Quantum limit of optical magnetometry in the presence of ac-Stark shifts (2000)
- Abstract: We analyze systematic (classical) and fundamental (quantum) limitations of the sensitivity of optical magnetometers resulting from ac-Stark shifts. We show that incontrast to absorption-based techniques, the signal reduction associated with classical broadening can be compensated in magnetometers based on phase measurements using electromagnetically induced transparency (EIT). However due to ac-Stark associated quantum noise the signal-to-noise ratio of EIT-based magnetometers attains a maximum value at a certain laser intensity. This value is independent on the quantum statistics of the light and defines a standard quantum limit of sensitivity. We demonstrate that an EIT-based optical magnetometer in Faraday configuration is the best candidate to achieve the highest sensitivity of magnetic field detection and give a detailed analysis of such a device.

- Threshold and linewidth of a mirrorless parametric oscillator (2000)
- Abstract: We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly enhanced four wave mixing in a coherently driven dense atomic vapor. It is shown that, in the ideal limit, an arbitrary small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that due to the large group velocity delays associated with coherent media, an extremely narrow oscillator linewidth is possible, making a narrow-band source of non-classical radiation feasible.

- Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles (2000)
- Abstract: We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as non-classical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.

- On quantum logic operations based on photon-exchange interactions in an ensemble of non-interacting atoms (2000)
- Abstract: The recently proposed idea to generate entanglement between photon states via exchange interactions in an ensemble of atoms (J. D. Franson and T. B. Pitman, Phys. Rev. A 60 , 917 (1999) and J. D. Franson et al., (quant- ph/9912121)) is discussed using an S -matix approach. It is shown that if the nonlinear response of the atoms is negligible and no additional atom-atom interactions are present, exchange interactions cannot produce entanglement between photons states in a process that returns the atoms to their initial state. Entanglement generation requires the presence of a nonlinear atomic response or atom-atom interactions.