## Preprint

### Refine

#### Faculty / Organisational entity

- Fachbereich Mathematik (28)
- Fraunhofer (ITWM) (1)

#### Year of publication

#### Document Type

- Preprint (29) (remove)

#### Keywords

- Boltzmann Simulations with Axisymmetric Geometry (1992)
- The paper presents theoretical and numerical investigations on simulation methods for the Boltzmann equation with axisymmetric geometry. The main task is to reduce the computational effort by taking advantage of the symmetry in the solution of the Boltzmann equation.; The reduction automatically leads to the concept of weighting functions for the radial space coordinate and therefore to a modified Boltzmann equation. Consequently the classical simulation methods have to be modified according to the new equation.; The numerical results shown in this paper - rarefied gas flows around a body with axisymmetric geometry - were done in the framework of the European space project HERMES.

- A Comparison of Simulation Methods for Rarefied Gas Flows (1993)
- Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.

- Consistency analysis of mesh-free methods for conservation laws (2000)
- Based on general partitions of unity and standard numerical flux functions, a class of mesh-free methods for conservation laws is derived. A Lax-Wendroff type consistency analysis is carried out for the general case of moving partition functions. The analysis leads to a set of conditions which are checked for the finite volume particle method FVPM. As a by-product, classical finite volume schemes are recovered in the approach for special choices of the partition of unity.

- On the Efficiency of Simulation Methods for the Boltzmann Equation on Parallel Computers (1991)
- The paper presents a parallelization technique for the finite pointset method, a numerical method for rarefied gas flows.; First we give a short introduction to the Boltzmann equation, which describes the behaviour of rarefied gas flows. The basic ideas of the finite pointset method are presented and a strategy to parallelize the algorithm will be explained. It is shown that a static processor partition leads to an insufficient load-balance of the processors. Therefore an optimized parallelization technique based on an adaptive processor partition will be introduced, which improves the efficiency of the simulation code over the whole region of interesting flow situation. Finally we present a comparison of the CPU-times between a parallel computer and a vector computer.

- A steady-state particle method for the Boltzmann equation (1998)
- We present a particle method for the numerical simulation of boundary value problems for the steady-state Boltzmann equation. Referring to some recent results concerning steady-state schemes, the current approach may be used for multi-dimensional problems, where the collision scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is demonstrated by some numerical results obtained from simulations for the (two-dimensional) BEnard's instability in a rarefied gas flow.

- On a Kinetic Model for Shallow Water Waves (1993)
- The system of shallow water waves is one of the classical examples for nonlinear, twodimensional conservation laws. The paper investigates a simple kinetic equation depending on a parameter e which leads for e to 0 to the system of shallow water waves. The corresponding equilibrium distribution function has a compact support which depends on the eigenvalues of the hyperbolic system. It is shown that this kind of kinetic approach is restricted to a special class of nonlinear conservation laws. The kinetic model is used to develop a simple particle method for the numerical solution of shallow water waves. The particle method can be implemented in a straightforward way and produces in test examples sufficiently accurate results.

- Generation of Random Variates Using Asymptotic Expansions (1994)
- Monte-Carlo methods are widely used numerical tools in various fields of application, like rarefied gas dynamics, vacuum technology, stellar dynamics or nuclear physics. A central part in all applications is the generation of random variates according to a given probability law. Fundamental techniques to generate non-uniform random variates are the inversion principle or the acceptance-rejection method. Both procedures can be quite time-consuming if the given probability law has a complicated structure.; In this paper we consider probability laws depending on a small parameter and investigate the use of asmptotic expansions to generate random variates. The results given in the paper are restrictedto first order expansions. We show error estimates for the discrepancy as well as for the bounded Lipschitz distance of the asymptotic expansion. Furthermore the integration error for some special classes of functions is given. The efficiency of the method is proved by a numerical example from rarefied gas flows.

- Tutorial on Asymptotic Analysis I (1994)
- This text summarizes parts of the exercises of the tutorialon 'Asymptotic Analysis' held in the winter term 1993/94 atthe University of Kaiserslautern.

- Boltzmann Simulation by Particle Methods (1994)
- Particle methods to simulate rarefied gas flows have found an increasing interest in Computational Fluid Dynamics during the last decade, see for example [1], [2], [3] and [4]. The general goal is to develop numerical schemes which are reliable enough to substitute real windtunnel experiments, needed for example in space research, by computer experiments. In order to achieve this goal one needs numerical methods solving the Boltzmann equation including all important physical effects. In general this means 3D computations for a chemically reacting rarefied gas. With codes of this kind at hand, Boltzmann simulation becomes a powerful tool in studying rarefied gas phenomena.