## Lecture

### Refine

#### Year of publication

#### Document Type

- Lecture (18) (remove)

#### Keywords

- Analysis (1)
- Diskrete Mathematik (1)
- Funktionalanalysis (1)
- Gruppentheorie (1)
- Integral (1)
- Integration (1)
- Lebesque-Integral (1)
- Lineare Algebra (1)
- Optimization (1)
- Riemannsche Summen (1)

- A Topology Primer (2002)
- Lecture notes written to accompany my introductory courses of topology, comprising point set topology, homotopy and homology.

- Analysis II (2000)
- Skript zum zweiten Teil der Vorlesung Analysis II im Sommersemester 2000

- Convex Analysis (1998)
- Preface Convex analysis is one of the mathematical tools which is used both explicitly and indirectly in many mathematical disciplines. However, there are not so many courses which have convex analysis as the main topic. More often, parts of convex analysis are taught in courses like linear or nonlinear optimization, probability theory, geometry, location theory, etc.. This manuscript gives a systematic introduction to the concepts of convex analysis. A focus is set to the geometrical interpretation of convex analysis. This focus was one of the reasons why I have decided to restrict myself to the finite dimensional case. Another reason for this restriction is that in the infinite dimensional case many proofs become more difficult and more technical. Therefore, it would not have been possible (for me) to cover all the topics I wanted to discuss in this introductory text in the infinite dimensional case, too. Anyway, I am convinced that even for someone who is interested in the infinite dimensional case this manuscript will be a good starting point. When I offered a course in convex analysis in the Wintersemester 1997/1998 (upon which this manuscript is based) a lot of students asked me how this course fits in their own studies. Because this manuscript will (hopefully) be used by some students in the future, I will give here some of the possible statements to answer this very question. - Convex analysis can be seen as an extension of classical analysis, in which still we get many of the results, like a mean-value theorem, with less assumptions on the smoothness of the function. - Convex analysis can be seen as a foundation of linear and nonlinear optimization which provides many tools to handle concepts in optimization much easier (for example the Lemma of Farkas). - Finally, convex analysis can be seen as a link between abstract geometry and very algorithmic oriented computational geometry. As already explained before, this manuscript is based on a one semester course and therefore cannot cover all topics and discuss all aspects of convex analysis in detail. To guide the interested reader I have included a list of nice books about this subject at the end of the manuscript. It should be noted that the philosophy of this course follows [3], [4] and THE BOOK of modern convex analysis [6]. The geometrical emphasis however, is also related to intentions of [1].^L

- Diskrete Mathematik (2005)
- Vorlesungsskript Diskrete Mathematik

- Endliche Gruppen (2001)
- Eine Einführung mit dem Ziel der Klassifikation von Gruppen kleiner Ordnung. Skript zum Proseminar im WS 2000/01. Inhalt: Satz von Lagrange, Normalteiler, Homomorphismen, symmetrische Gruppe, alternierende Gruppe, Operieren, Konjugieren, (semi-)direkte Produkte, Erzeuger und Relationen, zyklische Gruppen, abelsche Gruppen, Sylowsätze, Automorphismengruppen, Klassifikation, auflösbare Gruppen.

- Functional Analysis (1998)
- The aim of this course is to give a very modest introduction to the extremely rich and well-developed theory of Hilbert spaces, an introduction that hopefully will provide the students with a knowledge of some of the fundamental results of the theory and will make them familiar with everything needed in order to understand, believe and apply the spectral theorem for selfadjoint operators in Hilbert space. This implies that the course will have to give answers to such questions as - What is a Hilbert space? - What is a bounded operator in Hilbert space? - What is a selfadjoint operator in Hilbert space? - What is the spectrum of such an operator? - What is meant by a spectral decomposition of such an operator?

- Lineare Algebra I & II (2000)
- Inhalte der Grundvorlesungen Lineare Algebra I und II im Winter- und Sommersemester 1999/2000: Gruppen, Ringe, Körper, Vektorräume, lineare Abbildungen, Determinanten, lineare Gleichungssysteme, Polynomring, Eigenwerte, Jordansche Normalform, endlich-dimensionale Hilberträume, Hauptachsentransformation, multilineare Algebra, Dualraum, Tensorprodukt, äußeres Produkt, Einführung in Singular.