## Wissenschaftlicher Artikel

### Filtern

#### Fachbereich / Organisatorische Einheit

#### Erscheinungsjahr

#### Dokumenttyp

- Wissenschaftlicher Artikel (220) (entfernen)

#### Schlagworte

- AG-RESY (42)
- PARO (25)
- SKALP (11)
- Stadtplanung (9)
- Denkmäler (8)
- Monitoring (8)
- resonances (8)
- HANDFLEX (7)
- Raumplanung (7)
- Wannier-Stark systems (7)

- Unification in a Sorted (lambda)-Calculus with Term Declarations and Function Sorts (1994)
- The introduction of sorts to first-order automated deduc-tion has brought greater conciseness of representation and a considerablegain in efficiency by reducing search spaces. This suggests that sort in-formation can be employed in higher-order theorem proving with similarresults. This paper develops a sorted (lambda)-calculus suitable for automatictheorem proving applications. It extends the simply typed (lambda)-calculus by ahigher-order sort concept that includes term declarations and functionalbase sorts. The term declaration mechanism studied here is powerfulenough to subsume subsorting as a derived notion and therefore gives ajustification for the special form of subsort inference. We present a set oftransformations for sorted (pre-) unification and prove the nondetermin-istic completeness of the algorithm induced by these transformations.

- Higher-Order Tableaux (1999)
- Even though higher-order calculi for automated theorem prov-ing are rather old, tableau calculi have not been investigated yet. Thispaper presents two free variable tableau calculi for higher-order logicthat use higher-order unification as the key inference procedure. Thesecalculi differ in the treatment of the substitutional properties of equival-ences. The first calculus is equivalent in deductive power to the machine-oriented higher-order refutation calculi known from the literature, whereasthe second is complete with respect to Henkin's general models.

- Global and local dynamical invariants and quasienergy states of time-periodic Hamiltonians (1998)
- A formalism is developed for calculating the quasienergy states and spectrum for time-periodic quantum systems when a time-periodic dynamical invariant operator with a nondegenerate spectrum is known. The method, which circumvents the integration of the Schr-odinger equation, is applied to an integrable class of systems, where the global invariant operator is constructed. Furthermore, a local integrable approximation for more general non-integrable systems is developed. Numerical results are presented for the doubleresonance model.

- The 'Ermakov-Lewis' invariants for Coupled Linear Oscillators (1998)
- We consider N coupled linear oscillators with time-dependent coecients. An exact complex amplitude - real phase decomposition of the oscillatory motion is constructed. This decomposition is further used to derive N exact constants of motion which generalise the so-called Ermakov-Lewis invariant of a single oscillator. In the Floquet problem of periodic oscillator coecients we discuss the existence of periodic complex amplitude functions in terms of existing Floquet solutions.

- Reconstructing Proofs at the Assertion Level (1999)
- Most automated theorem provers suffer from the problem thatthey can produce proofs only in formalisms difficult to understand even forexperienced mathematicians. Effort has been made to reconstruct naturaldeduction (ND) proofs from such machine generated proofs. Although thesingle steps in ND proofs are easy to understand, the entire proof is usuallyat a low level of abstraction, containing too many tedious steps. To obtainproofs similar to those found in mathematical textbooks, we propose a newformalism, called ND style proofs at the assertion level , where derivationsare mostly justified by the application of a definition or a theorem. Aftercharacterizing the structure of compound ND proof segments allowing asser-tion level justification, we show that the same derivations can be achieved bydomain-specific inference rules as well. Furthermore, these rules can be rep-resented compactly in a tree structure. Finally, we describe a system calledPROVERB , which substantially shortens ND proofs by abstracting them tothe assertion level and then transforms them into natural language.

- Planning Argumentative Texts (1999)
- This paper presents PROVERB a text planner forargumentative texts. PROVERB's main feature isthat it combines global hierarchical planning and un-planned organization of text with respect to local de-rivation relations in a complementary way. The formersplits the task of presenting a particular proof intosubtasks of presenting subproofs. The latter simulateshow the next intermediate conclusion to be presentedis chosen under the guidance of the local focus.

- Planning Reference Choices for Argumentative Texts (1999)
- This paper deals with the reference choices involved in thegeneration of argumentative text. A piece of argument-ative text such as the proof of a mathematical theoremconveys a sequence of derivations. For each step of de-rivation, the premises (previously conveyed intermediateresults) and the inference method (such as the applica-tion of a particular theorem or definition) must be madeclear. The appropriateness of these references cruciallyaffects the quality of the text produced.Although not restricted to nominal phrases, our refer-ence decisions are similar to those concerning nominalsubsequent referring expressions: they depend on theavailability of the object referred to within a context andare sensitive to its attentional hierarchy . In this paper,we show how the current context can be appropriatelysegmented into an attentional hierarchy by viewing textgeneration as a combination of planned and unplannedbehavior, and how the discourse theory of Reichmann canbe adapted to handle our special reference problem.

- Translating Machine-Generated Resolution Proofs into ND-Proofs at the Assertion Level (1999)
- Most automated theorem provers suffer from the problemthat the resulting proofs are difficult to understand even for experiencedmathematicians. An effective communication between the system andits users, however, is crucial for many applications, such as in a mathematical assistant system. Therefore, efforts have been made to transformmachine generated proofs (e.g. resolution proofs) into natural deduction(ND) proofs. The state-of-the-art procedure of proof transformation fol-lows basically its completeness proof: the premises and the conclusionare decomposed into unit literals, then the theorem is derived by mul-tiple levels of proofs by contradiction. Indeterminism is introduced byheuristics that aim at the production of more elegant results. This inde-terministic character entails not only a complex search, but also leads tounpredictable results.In this paper we first study resolution proofs in terms of meaningful op-erations employed by human mathematicians, and thereby establish acorrespondence between resolution proofs and ND proofs at a more ab-stract level. Concretely, we show that if its unit initial clauses are CNFsof literal premises of a problem, a unit resolution corresponds directly toa well-structured ND proof segment that mathematicians intuitively un-derstand as the application of a definition or a theorem. The consequenceis twofold: First it enhances our intuitive understanding of resolutionproofs in terms of the vocabulary with which mathematicians talk aboutproofs. Second, the transformation process is now largely deterministicand therefore efficient. This determinism also guarantees the quality ofresulting proofs.

- Analogy Makes Proofs Feasible (1999)
- Many mathematical proofs are hard to generate forhumans and even harder for automated theoremprovers. Classical techniques of automated theoremproving involve the application of basic rules, of built-in special procedures, or of tactics. Melis (Melis 1993)introduced a new method for analogical reasoning inautomated theorem proving. In this paper we showhow the derivational analogy replay method is relatedand extended to encompass analogy-driven proof planconstruction. The method is evaluated by showing theproof plan generation of the Pumping Lemma for con-text free languages derived by analogy with the proofplan of the Pumping Lemma for regular languages.This is an impressive evaluation test for the analogicalreasoning method applied to automated theorem prov-ing, as the automated proof of this Pumping Lemmais beyond the capabilities of any of the current auto-mated theorem provers.