## Article

### Refine

#### Document Type

- Article (18) (remove)

#### Keywords

- Partial functions (1)
- abstract description (1)
- analogical reasoning (1)
- analogy (1)
- completeness (1)
- conservative extension (1)
- consistency (1)
- frames (1)
- higher order logic (1)
- hybrid knowledge representation (1)

- Adapting Methods to Novel Tasks in Proof Planning ? (1999)
- In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.

- Adapting the Diagonalization Method by Reformulations (1999)
- Extending the planADbased paradigm for auto-mated theorem proving, we developed in previ-ous work a declarative approach towards rep-resenting methods in a proof planning frame-work to support their mechanical modification.This paper presents a detailed study of a classof particular methods, embodying variations ofa mathematical technique called diagonaliza-tion. The purpose of this paper is mainly two-fold. First we demonstrate that typical math-ematical methods can be represented in ourframework in a natural way. Second we illus-trate our philosophy of proof planning: besidesplanning with a fixed repertoire of methods,metaADmethods create new methods by modify-ing existing ones. With the help of three differ-ent diagonalization problems we present an ex-ample trace protocol of the evolution of meth-ods: an initial method is extracted from a par-ticular successful proof. This initial method isthen reformulated for the subsequent problems,and more general methods can be obtained byabstracting existing methods. Finally we comeup with a fairly abstract method capable ofdealing with all the three problems, since it cap-tures the very key idea of diagonalization.

- A Tableau Calculus for Partial Functions (1999)
- Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago, but there has not been a satisfact-ory mechanization. Recent years have seen a thorough investigation ofthe framework of many-valued truth-functional logics. However, strongKleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problemby applying recent methods from sorted logics. This paper presents atableau calculus that combines the proper treatment of partial functionswith the efficiency of sorted calculi.

- A Resolution Calculus for Presuppositions (1999)
- The semantics of everyday language and the semanticsof its naive translation into classical first-order language consider-ably differ. An important discrepancy that is addressed in this paperis about the implicit assumption what exists. For instance, in thecase of universal quantification natural language uses restrictions andpresupposes that these restrictions are non-empty, while in classi-cal logic it is only assumed that the whole universe is non-empty.On the other hand, all constants mentioned in classical logic arepresupposed to exist, while it makes no problems to speak about hy-pothetical objects in everyday language. These problems have beendiscussed in philosophical logic and some adequate many-valuedlogics were developed to model these phenomena much better thanclassical first-order logic can do. An adequate calculus, however, hasnot yet been given. Recent years have seen a thorough investigationof the framework of many-valued truth-functional logics. UnfortuADnately, restricted quantifications are not truth-functional, hence theydo not fit the framework directly. We solve this problem by applyingrecent methods from sorted logics.

- Using Exemplary Knowledge for Justified Analogical Reasoning (1999)
- Typical instances, that is, instances that are representative for a particular situ-ation or concept, play an important role in human knowledge representationand reasoning, in particular in analogical reasoning. This wellADknown obser-vation has been a motivation for investigations in cognitive psychology whichprovide a basis for our characterization of typical instances within conceptstructures and for a new inference rule for justified analogical reasoning withtypical instances. In a nutshell this paper suggests to augment the proposi-tional knowledge representation system by a non-propositional part consistingof concept structures which may have directly represented instances as ele-ments. The traditional reasoning system is extended by a rule for justifiedanalogical inference with typical instances using information extracted fromboth knowledge representation subsystems.

- Reformulating Resolution Problems by Tactics (1999)
- A straightforward formulation of a mathematical problem is mostly not ad-equate for resolution theorem proving. We present a method to optimize suchformulations by exploiting the variability of first-order logic. The optimizingtransformation is described as logic morphisms, whose operationalizations aretactics. The different behaviour of a resolution theorem prover for the sourceand target formulations is demonstrated by several examples. It is shown howtactical and resolution-style theorem proving can be combined.

- Deduktionssysteme (1999)