## Preprint

### Refine

#### Faculty / Organisational entity

#### Year of publication

#### Document Type

- Preprint (1176) (remove)

#### Keywords

- AG-RESY (17)
- Case-Based Reasoning (11)
- Mehrskalenanalyse (8)
- Wavelet (8)
- Approximation (7)
- Boltzmann Equation (7)
- Inverses Problem (7)
- Location Theory (7)
- Case Based Reasoning (6)
- RODEO (6)

- Ranking Robustness and its Application to Evacuation Planning (2016)
- We present a new approach to handle uncertain combinatorial optimization problems that uses solution ranking procedures to determine the degree of robustness of a solution. Unlike classic concepts for robust optimization, our approach is not purely based on absolute quantitative performance, but also includes qualitative aspects that are of major importance for the decision maker. We discuss the two variants, solution ranking and objective ranking robustness, in more detail, presenting problem complexities and solution approaches. Using an uncertain shortest path problem as a computational example, the potential of our approach is demonstrated in the context of evacuation planning due to river flooding.

- Zone-based, Robust Flood Evacuation Planning (2016)
- We consider the problem to evacuate several regions due to river flooding, where sufficient time is given to plan ahead. To ensure a smooth evacuation procedure, our model includes the decision which regions to assign to which shelter, and when evacuation orders should be issued, such that roads do not become congested. Due to uncertainty in weather forecast, several possible scenarios are simultaneously considered in a robust optimization framework. To solve the resulting integer program, we apply a Tabu search algorithm based on decomposing the problem into better tractable subproblems. Computational experiments on random instances and an instance based on Kulmbach, Germany, data show considerable improvement compared to an MIP solver provided with a strong starting solution.

- Approximation of Ellipsoids Using Bounded Uncertainty Sets (2016)
- In this paper, we discuss the problem of approximating ellipsoid uncertainty sets with bounded (gamma) uncertainty sets. Robust linear programs with ellipsoid uncertainty lead to quadratically constrained programs, whereas robust linear programs with bounded uncertainty sets remain linear programs which are generally easier to solve. We call a bounded uncertainty set an inner approximation of an ellipsoid if it is contained in it. We consider two different inner approximation problems. The first problem is to find a bounded uncertainty set which sticks close to the ellipsoid such that a shrank version of the ellipsoid is contained in it. The approximation is optimal if the required shrinking is minimal. In the second problem, we search for a bounded uncertainty set within the ellipsoid with maximum volume. We present how both problems can be solved analytically by stating explicit formulas for the optimal solutions of these problems. Further, we present in a computational experiment how the derived approximation techniques can be used to approximate shortest path and network flow problems which are affected by ellipsoidal uncertainty.

- Global existence for a degenerate haptotaxis model of tumor invasion under the go-or-grow dichotomy hypothesis (2016)
- We propose and study a strongly coupled PDE-ODE-ODE system modeling cancer cell invasion through a tissue network under the go-or-grow hypothesis asserting that cancer cells can either move or proliferate. Hence our setting features two interacting cell populations with their mutual transitions and involves tissue-dependent degenerate diffusion and haptotaxis for the moving subpopulation. The proliferating cells and the tissue evolution are characterized by way of ODEs for the respective densities. We prove the global existence of weak solutions and illustrate the model behaviour by numerical simulations in a two-dimensional setting.

- On a coupled SDE-PDE system modeling acid-mediated tumor invasion (2016)
- We propose and analyze a multiscale model for acid-mediated tumor invasion accounting for stochastic effects on the subcellular level. The setting involves a PDE of reaction-diffusion-taxis type describing the evolution of the tumor cell density, the movement being directed towards pH gradients in the local microenvironment, which is coupled to a PDE-SDE system characterizing the dynamics of extracellular and intracellular proton concentrations, respectively. The global well-posedness of the model is shown and numerical simulations are performed in order to illustrate the solution behavior.

- Global existence for a go-or-grow multiscale model for tumor invasion with therapy (2016)
- We investigate a PDE-ODE system describing cancer cell invasion in a tissue network. The model is an extension of the multiscale setting in [28,40], by considering two subpopulations of tumor cells interacting mutually and with the surrounding tissue. According to the go-or-grow hypothesis, these subpopulations consist of moving and proliferating cells, respectively. The mathematical setting also accommodates the effects of some therapy approaches. We prove the global existence of weak solutions to this model and perform numerical simulations to illustrate its behavior for different therapy strategies.

- Discrete Parallel Machine Makespan ScheLoc Problem (2015)
- Scheduling-Location (ScheLoc) Problems integrate the separate fields of scheduling and location problems. In ScheLoc Problems the objective is to find locations for the machines and a schedule for each machine subject to some production and location constraints such that some scheduling object- ive is minimized. In this paper we consider the Discrete Parallel Machine Makespan (DPMM) ScheLoc Problem where the set of possible machine loc- ations is discrete and a set of n jobs has to be taken to the machines and processed such that the makespan is minimized. Since the separate location and scheduling problem are both NP-hard, so is the corresponding ScheLoc Problem. Therefore, we propose an integer programming formulation and different versions of clustering heuristics, where jobs are split into clusters and each cluster is assigned to one of the possible machine locations. Since the IP formulation can only be solved for small scale instances we propose several lower bounds to measure the quality of the clustering heuristics. Ex- tensive computational tests show the efficiency of the heuristics.

- A new solution approach for solving the 2-facility location problem in the plane with block norms (2015)
- Motivated by the time-dependent location problem over T time-periods introduced in Maier and Hamacher (2015) we consider the special case of two time-steps, which was shown to be equivalent to the static 2-facility location problem in the plane. Geometric optimality conditions are stated for the median objective. When using block norms, these conditions are used to derive a polygon grid inducing a subdivision of the plane based on normal cones, yielding a new approach to solve the 2-facility location problem in polynomial time. Combinatorial algorithms for the 2-facility location problem based on geometric properties are deduced and their complexities are analyzed. These methods differ from others as they are completely working on geometric objects to derive the optimal solution set.

- Competitive Algorithms for Multistage Online Scheduling (2015)
- We study an online flow shop scheduling problem where each job consists of several tasks that have to be completed in t different stages and the goal is to maximize the total weight of accepted jobs. The set of tasks of a job contains one task for each stage and each stage has a dedicated set of identical parallel machines corresponding to it that can only process tasks of this stage. In order to gain the weight (profit) associated with a job j, each of its tasks has to be executed between a task-specific release date and deadline subject to the constraint that all tasks of job j from stages 1, …, i-1 have to be completed before the task of the ith stage can be started. In the online version, jobs arrive over time and all information about the tasks of a job becomes available at the release date of its first task. This model can be used to describe production processes in supply chains when customer orders arrive online. We show that even the basic version of the offline problem with a single machine in each stage, unit weights, unit processing times, and fixed execution times for all tasks (i.e., deadline minus release date equals processing time) is APX-hard. Moreover, we show that the approximation ratio of any polynomial-time approximation algorithm for this basic version of the problem must depend on the number t of stages. For the online version of the basic problem, we provide a (2t-1)-competitive deterministic online algorithm and a matching lower bound. Moreover, we provide several (sometimes tight) upper and lower bounds on the competitive ratio of online algorithms for several generalizations of the basic problem involving different weights, arbitrary release dates and deadlines, different processing times of tasks, and several identical machines per stage.

- A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor (2015)
- A nonlocal stochastic model for intra- and extracellular proton dynamics in a tumor is proposed. The intracellular dynamics is governed by an SDE coupled to a reaction-diffusion equation for the extracellular proton concentration on the macroscale. In a more general context the existence and uniqueness of solutions for local and nonlocal SDE-PDE systems are established allowing, in particular, to analyze the proton dynamics model both, in its local version and the case with nonlocal path dependence. Numerical simulations are performed to illustrate the behavior of solutions, providing some insights into the effects of randomness on tumor acidity.