## Doctoral Thesis

### Refine

#### Document Type

- Doctoral Thesis (3) (remove)

#### Has Fulltext

- yes (3) (remove)

#### Keywords

- optimales Investment (3) (remove)

This thesis deals with 3 important aspects of optimal investment in real-world financial markets: taxes, crashes, and illiquidity. An introductory chapter reviews the portfolio problem in its historical context and motivates the theme of this work: We extend the standard modelling framework to include specific real-world features and evaluate their significance. In the first chapter, we analyze the optimal portfolio problem with capital gains taxes, assuming that taxes are deferred until the end of the investment horizon. The problem is solved with the help of a modification of the classical martingale method. The second chapter is concerned with optimal asset allocation under the threat of a financial market crash. The investor takes a worst-case attitude towards the crash, so her investment objective is to be best off in the most adverse crash scenario. We first survey the existing literature on the worst-case approach to optimal investment and then present in detail the novel martingale approach to worst-case portfolio optimization. The first part of this chapter is based on joint work with Ralf Korn. In the last chapter, we investigate optimal portfolio decisions in the presence of illiquidity. Illiquidity is understood as a period in which it is impossible to trade on financial markets. We use dynamic programming techniques in combination with abstract convergence results to solve the corresponding optimal investment problem. This chapter is based on joint work with Holger Kraft and Peter Diesinger.

In the classical Merton investment problem of maximizing the expected utility from terminal wealth and intermediate consumption stock prices are independent of the investor who is optimizing his investment strategy. This is reasonable as long as the considered investor is small and thus does not influence the asset prices. However for an investor whose actions may affect the financial market the framework of the classical investment problem turns out to be inappropriate. In this thesis we provide a new approach to the field of large investor models. We study the optimal investment problem of a large investor in a jump-diffusion market which is in one of two states or regimes. The investor’s portfolio proportions as well as his consumption rate affect the intensity of transitions between the different regimes. Thus the investor is ’large’ in the sense that his investment decisions are interpreted by the market as signals: If, for instance, the large investor holds 25% of his wealth in a certain asset then the market may regard this as evidence for the corresponding asset to be priced incorrectly, and a regime shift becomes likely. More specifically, the large investor as modeled here may be the manager of a big mutual fund, a big insurance company or a sovereign wealth fund, or the executive of a company whose stocks are in his own portfolio. Typically, such investors have to disclose their portfolio allocations which impacts on market prices. But even if a large investor does not disclose his portfolio composition as it is the case of several hedge funds then the other market participants may speculate about the investor’s strategy which finally could influence the asset prices. Since the investor’s strategy only impacts on the regime shift intensities the asset prices do not necessarily react instantaneously. Our model is a generalization of the two-states version of the Bäuerle-Rieder model. Hence as the Bäuerle-Rieder model it is suitable for long investment periods during which market conditions could change. The fact that the investor’s influence enters the intensities of the transitions between the two states enables us to solve the investment problem of maximizing the expected utility from terminal wealth and intermediate consumption explicitly. We present the optimal investment strategy for a large investor with CRRA utility for three different kinds of strategy-dependent regime shift intensities – constant, step and affine intensity functions. In each case we derive the large investor’s optimal strategy in explicit form only dependent on the solution of a system of coupled ODEs of which we show that it admits a unique global solution. The thesis is organized as follows. In Section 2 we repeat the classical Merton investment problem of a small investor who does not influence the market. Further the Bäuerle-Rieder investment problem in which the market states follow a Markov chain with constant transition intensities is discussed. Section 3 introduces the aforementioned investment problem of a large investor. Besides the mathematical framework and the HJB-system we present a verification theorem that is necessary to verify the optimality of the solutions to the investment problem that we derive later on. The explicit derivation of the optimal investment strategy for a large investor with power utility is given in Section 4. For three kinds of intensity functions – constant, step and affine – we give the optimal solution and verify that the corresponding ODE-system admits a unique global solution. In case of the strategy-dependent intensity functions we distinguish three particular kinds of this dependency – portfolio-dependency, consumption-dependency and combined portfolio- and consumption-dependency. The corresponding results for an investor having logarithmic utility are shown in Section 5. In the subsequent Section 6 we consider the special case of a market consisting of only two correlated stocks besides the money market account. We analyze the investor’s optimal strategy when only the position in one of those two assets affects the market state whereas the position in the other asset is irrelevant for the regime switches. Various comparisons of the derived investment problems are presented in Section 7. Besides the comparisons of the particular problems with each other we also dwell on the sensitivity of the solution concerning the parameters of the intensity functions. Finally we consider the loss the large investor had to face if he neglected his influence on the market. In Section 8 we conclude the thesis.

In this thesis diverse problems concerning inflation-linked products are dealt with. To start with, two models for inflation are presented, including a geometric Brownian motion for consumer price index itself and an extended Vasicek model for inflation rate. For both suggested models the pricing formulas of inflation-linked products are derived using the risk-neutral valuation techniques. As a result Black and Scholes type closed form solutions for a call option on inflation index for a Brownian motion model and inflation evolution for an extended Vasicek model as well as for an inflation-linked bond are calculated. These results have been already presented in Korn and Kruse (2004) [17]. In addition to these inflation-linked products, for the both inflation models the pricing formulas of a European put option on inflation, an inflation cap and floor, an inflation swap and an inflation swaption are derived. Consequently, basing on the derived pricing formulas and assuming the geometric Brownian motion process for an inflation index, different continuous-time portfolio problems as well as hedging problems are studied using the martingale techniques as well as stochastic optimal control methods. These utility optimization problems are continuous-time portfolio problems in different financial market setups and in addition with a positive lower bound constraint on the final wealth of the investor. When one summarizes all the optimization problems studied in this work, one will have the complete picture of the inflation-linked market and both counterparts of market-participants, sellers as well as buyers of inflation-linked financial products. One of the interesting results worth mentioning here is naturally the fact that a regular risk-averse investor would like to sell and not buy inflation-linked products due to the high price of inflation-linked bonds for example and an underperformance of inflation-linked bonds compared to the conventional risk-free bonds. The relevance of this observation is proved by investigating a simple optimization problem for the extended Vasicek process, where as a result we still have an underperforming inflation-linked bond compared to the conventional bond. This situation does not change, when one switches to an optimization of expected utility from the purchasing power, because in its nature it is only a change of measure, where we have a different deflator. The negativity of the optimal portfolio process for a normal investor is in itself an interesting aspect, but it does not affect the optimality of handling inflation-linked products compared to the situation not including these products into investment portfolio. In the following, hedging problems are considered as a modeling of the other half of inflation market that is inflation-linked products buyers. Natural buyers of these inflation-linked products are obviously institutions that have payment obligations in the future that are inflation connected. That is why we consider problems of hedging inflation-indexed payment obligations with different financial assets. The role of inflation-linked products in the hedging portfolio is shown to be very important by analyzing two alternative optimal hedging strategies, where in the first one an investor is allowed to trade as inflation-linked bond and in the second one he is not allowed to include an inflation-linked bond into his hedging portfolio. Technically this is done by restricting our original financial market, which is made of a conventional bond, inflation index and a stock correlated with inflation index, to the one, where an inflation index is excluded. As a whole, this thesis presents a wide view on inflation-linked products: inflation modeling, pricing aspects of inflation-linked products, various continuous-time portfolio problems with inflation-linked products as well as hedging of inflation-related payment obligations.