## Doctoral Thesis

### Refine

#### Document Type

- Doctoral Thesis (2) (remove)

#### Language

- English (2) (remove)

#### Has Fulltext

- yes (2) (remove)

#### Keywords

- rate-dependency (2) (remove)

#### Faculty / Organisational entity

- Fachbereich Maschinenbau und Verfahrenstechnik (2) (remove)

Nowadays piezoelectric and ferroelectric materials are becoming more and more an interesting part of smart materials in scientific and engineering applications. Precision machining in manufacturing, micropositioning in metrology, common rail systems with piezo fuel injection control in automobile industry, and ferroelectric random access memories (FRAM) in microelectromechanical systems (MEMS) besides commercial piezo actuators and sensors can be very good examples for the application of piezoceramic and ferroelectric materials. In spite of having good characteristics, piezoelectric and ferroelectric materials have significant nonlinearities, which limit the applications in high performance usage. Domain switching (ferroelastic or ferroelectric) is the main reason for the nonlinearity of ferroelectric materials. External excessive electromechanical loads (mechanical stress and electric field) are driving forces for domain switching. In literature, various important experiments related to the non-linear properties of piezoelectric and ferroelectric materials are reported. Simulations of nonlinear properties of piezoelectric and ferroelectric materials based on physical insights of the material have been performed during the last two decades by using micromechanical and phenomenological models. The most significant experiments and models are deeply discussed in the literature survey. In this thesis the nonlinear behaviour of tetragonal perovskite type piezoceramic materials is simulated theoretically using two and three dimensional micromechanical models which are based on physical insights of the material. In the simulations a bulk piezoceramic material which has numerous grains is considered. Each grain has random orientation in properties of polarization and strain. Randomness of orientations is given by Euler angles equally distributed between \(0\) and \(2\pi\). Each element in the micromechanical model has been assumed to have the same properties of the real piezoelectric grain. In the first part of the simulations, quasi-static characteristics of piezoelectric materials are investigated by applying cyclic, rate independent, bipolar, uni-axial and external electrical loading with an amplitude of 2 kV/mm gradually starting from zero value in virgin state. Moreover, the simulations are undertaken for these materials which are subjected to quasi-static, uni-polar, uni-axial mechanical stress, namely compressive stress. The calculations are performed at each element based on linear constitutive equations, nonlinear domain switching and a probability theory for domain switching. In order to fit the simulations to the experimental data, some parameters such as spontaneous polarization, spontaneous strain, piezoelectric and dielectric constants are chosen from literature. The domain switching of each grain is determined by an electromechanical energy criterion. Depending on the actual energy related to a critical energy a certain probability is introduced for domain switching of the polarization direction. Same energy levels are assumed in the electromechanical energy relation for different types of domain switching like 90º and 180º for perovskite type tetragonal or 70.5º and 109.5º for rhombohedral microstructures. It is assumed that intergranular effects between grains can be modelled by such probability functions phenomenologically. The macroscopic response of the material to the applied electromechanical loading is calculated by using Euler transformations and averaging the individual grains. Properties of piezoelectric materials under fixed mechanical stresses are also investigated by applying constant compressive stress in addition to cyclic electrical loading in the simulations. Compressive stress is applied and kept constant before cyclic bipolar electrical loading is implemented. In the following chapters, a three-dimensional micromechanical model is extended for the simulation of the rate dependent properties of certain perovskite type tetragonal piezoelectric materials. The frequency dependent micromechanical model is now not only based on linear constitutive and nonlinear domain switching but also linear kinetics theories. The material is loaded both electrically and mechanically in separate manner with an alternating electrical voltage and mechanical stress values of various moderate frequencies, which are in the order of 0.01 Hz to 1 Hz. Electromechanical energy equation in combination with a probability function is again used to determine the onset of the domain switching inside the grains. The propagation of the domain wall during the domain switching process in grains is modelled by means of linear kinetics relations after a new domain nucleates. Electric displacement versus electric field hysteresis loops, mechanical strain versus mechanical stress and electric displacement versus mechanical stress for different frequencies and amplitudes of the alternating electric fields and compressive stresses are simulated and presented. A simple micromechanical model without using probabilistic approach is compared with the one that takes it into account. Both models give important insights into the rate dependency of piezoelectric materials, which was observed in some experiments reported in the literature. Intergranular effects are other significant factors for nonlinearities of polycrystalline ferroelectric materials. Even piezoelectric actuators and sensors show nonlinearities when they are operated with electrical loading, which is much lower than the coercive electric field level. Intergranular effects are the main cause of such small hysteresis loops. In the corresponding chapter, two basic field effects which are electrical and mechanical are taken into account for the consideration of intergranular effects micromechanically in the simulations of the two dimensional model. Therefore, a new electromechanical energy equation for the threshold of domain switching is introduced to explain nonlinearities stemming from both domain switching and intergranular effects. The material parameters like coercive electric field and critical spontaneous polarization or strain quantities are not implemented in the electromechanical energy relation. But, this relation contains new parameters which consider both mechanical and electrical field characteristics of neighbouring elements. By using this new model, mechanical strain versus electric field butterfly curves under small electrical loading conditions are also simulated. Hence, a rate dependent concept is applied in butterfly curves by means of linear kinetics model. As a result, the simulations have better matching with corresponding experiments in literature. In the next step, the model can be extended in three dimensional case and the parameters of electromechanical energy relation can be improved in order to get better simulations of nonlinear properties of polycrystalline piezoelectric materials.

Within the last decades, a remarkable development in materials science took place -- nowadays, materials are not only constructed for the use of inert structures but rather designed for certain predefined functions. This innovation was accompanied with the appearance of smart materials with reliable recognition, discrimination and capability of action as well as reaction. Even though ferroelectric materials serve smartly in real applications, they also possess several restrictions at high performance usage. The behavior of these materials is almost linear under the action of low electric fields or low mechanical stresses, but exhibits strong non-linear response under high electric fields or mechanical stresses. High electromechanical loading conditions result in a change of the spontaneous polarization direction with respect to individual domains, which is commonly referred to as domain switching. The aim of the present work is to develop a three-dimensional coupled finite element model, to study the rate-independent and rate-dependent behavior of piezoelectric materials including domain switching based on a micromechanical approach. The proposed model is first elaborated within a two-dimensional finite element setting for piezoelectric materials. Subsequently, the developed two-dimensional model is extended to the three-dimensional case. This work starts with developing a micromechanical model for ferroelectric materials. Ferroelectric materials exhibit ferroelectric domain switching, which refers to the reorientation of domains and occurs under purely electrical loading. For the simulation, a bulk piezoceramic material is considered and each grain is represented by one finite element. In reality, the grains in the bulk ceramics material are randomly oriented. This property is taken into account by applying random orientation as well as uniform distribution for individual elements. Poly-crystalline ferroelectric materials at un-poled virgin state can consequently be characterized by randomly oriented polarization vectors. Energy reduction of individual domains is adopted as a criterion for the initiation of domain switching processes. The macroscopic response of the bulk material is predicted by classical volume-averaging techniques. In general, domain switching does not only depend on external loads but also on neighboring grains, which is commonly denoted as the grain boundary effect. These effects are incorporated into the developed framework via a phenomenologically motivated probabilistic approach by relating the actual energy level to a critical energy level. Subsequently, the order of the chosen polynomial function is optimized so that simulations nicely match measured data. A rate-dependent polarization framework is proposed, which is applied to cyclic electrical loading at various frequencies. The reduction in free energy of a grain is used as a criterion for the onset of the domain switching processes. Nucleation in new grains and propagation of the domain walls during domain switching is modeled by a linear kinetics theory. The simulated results show that for increasing loading frequency the macroscopic coercive field is also increasing and the remanent polarization increases at lower loading amplitudes. The second part of this work is focused on ferroelastic domain switching, which refers to the reorientation of domains under purely mechanical loading. Under sufficiently high mechanical loading, however, the strain directions within single domains reorient with respect to the applied loading direction. The reduction in free energy of a grain is used as a criterion for the domain switching process. The macroscopic response of the bulk material is computed for the hysteresis curve (stress vs strain) whereby uni-axial and quasi-static loading conditions are applied on the bulk material specimen. Grain boundary effects are addressed by incorporating the developed probabilistic approach into this framework and the order of the polynomial function is optimized so that simulations match measured data. Rate dependent domain switching effects are captured for various frequencies and mechanical loading amplitudes by means of the developed volume fraction concept which relates the particular time interval to the switching portion. The final part of this work deals with ferroelectric and ferroelastic domain switching and refers to the reorientation of domains under coupled electromechanical loading. If this free energy for combined electromechanical loading exceeds the critical energy barrier elements are allowed to switch. Firstly, hysteresis and butterfly curves under purely electrical loading are discussed. Secondly, additional mechanical loads in axial and lateral directions are applied to the specimen. The simulated results show that an increasing compressive stress results in enlarged domain switching ranges and that the hysteresis and butterfly curves flatten at higher mechanical loading levels.